
Math 127 (Spring 2007)
Homework #1
30 Jan 2007

Question 1

BLAST stands for Basic Local Alignment Search Tool. It is a family of programs developed by the
National Center for Biotechnology Information (NCBI) for the purpose of comparing gene and protein se-
quences with those in public databases. BLAST was born in 1990 when five researchers – Stephen Altschul,
Warren Gish, David Lipman (all from NCBI), Webb Miller (Pennsylvania State University), and Gene My-
ers (University of Arizona) – designed and implemented an algorithm that was able to search large genomic
databases more than 50 times faster than traditional exhaustive methods with only a slight loss in accuracy.
The programs in the BLAST family are based on that algorithm. Since then, it has been a popular tool
used by researchers for a variety of biological enquires, such as discovering the function of a gene sequence in
one animal by comparing it with sequences with known functions in other animals, or finding evolutionary
relationships between different animals. The popularity of BLAST stems from its speed, easy access, and
availability of specialized versions for different types of problems. The user is also allowed to adjust various
parameters in order to fine-tune the search to suit the needs of his/her enquiry. Examples of the parameters
include gap costs, statistical significance threshold and choice of database to search.

At http://www.ncbi.nlm.nih.gov/Education/BLASTinfo/tut1.html, one can find a tutorial introduc-
ing the use of BLAST. The following example was extracted from this website. It is the amino acid sequence
of the uncharacterized archaebacterial protein MJ0577 from the Methanococcus Jannaschii, and we wish to
search for sequence relatives in the amino acid database. We click on the ”Protein-protein BLAST (blastp)”
tool on the BLAST homepage and paste the following sequence in FASTA format into the search box:

>gi|2501594|sp|Q57997|Y577_METJA PROTEIN MJ0577
MSVMYKKILYPTDFSETAEIALKHVKAFKTLKAEEVILLHVIDEREIKKRDIFS
LLLGVAGLNKSVEEFENELKNKLTEEAKNKMENIKKELEDVGFKVKDIIVVGIP
HEEIVKIAEDEGVDIIIMGSHGKTNLKEILLGSVTENVIKKSNKPVLVVKRKNS

Leaving all the other options unchanged, we click on the BLAST button and the FORMAT button on
the following page. A colorful chart showing the 114 BLAST hits appears on the screen, with the hits ranked
according to their alignment scores. The red hits are sequences in the database demonstrating incredibly close
alignment with our input sequence. It is not surprising that we have one red hit, which is the original amino
acid sequence MJ0577 in the database. Next, we have 12 pink hits with relatively good alignment. Studying
these sequences reveals that most of them are stress response proteins. This tells us that the MJ0577 is
likely to be a stress response protein. The chart also shows several green and blue hits which are lower on
the alignment scale. Below the chart, we see our original amino acid sequence placed side-by-side with the
hit sequences in the database. The individual acids which match up, as well as gaps in the alignments, are
clearly shown. For instance, in our first pink hit, we have 43% exact matches, 68% positive matches, and 7%
in gaps. The above example demonstrates the efficiency and usefulness of BLAST in biological enquiries.

Question 2

The likelihood function of the given problem is

L(θ) = (0.2 + θ)u1(0.3 + θ)u2(0.5− 2θ)u3 ,

and the log-likelihood function is

l(θ) = u1 log(0.2 + θ) + u2 log(0.3 + θ) + u3 log(0.5− 2θ).
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The maximum likelihood estimate θ̂ is satisfies when

0 = l′(θ̂) =
u1

0.2 + θ̂
+

u2

0.3 + θ̂
− 2u3

0.5− 2θ̂
(1)

Clearing the denominators gives

0 = u1(0.3 + θ̂)(0.5− 2θ̂) + u2(0.2 + θ̂)(0.5− 2θ̂)− 2u3(0.2 + θ̂)(0.3 + θ̂)

= −2(u1 + u2 + u3)θ̂2 + (−0.1u1 + 0.1u2 − u3)θ̂ + (0.15u1 + 0.10u2 − 0.12u3)

The solution to this quadratic equation is

θ̂ =
b · u±

√
uT Au

c · u
(2)

where

A =

 1.21 0.99 0.02
0.99 0.81 0.02
0.02 0.02 0.04

 , b =

 −0.1
0.1
1

 , c =

 4
4
4

 , u =

 u1

u2

u3

 .

It remains for us to determine which of the above two possible solutions for θ̂ lies in the natural parameter
space of the linear model (i.e. θ̂ satisfies 0 ≤ fi(θ̂) ≤ 1 for i = 1, 2, 3). We consider the hyperplane
arrangement {fi = 0}i∈[3] in R, and note that the above inequalities imply that θ̂ must lie in the bounded
region −0.2 < θ̂ < 0.25. Varchenko’s Formula tells us that equation (1) has precisely one root θ̂0 lying in
this bounded region and also another root θ̂1 lying in the bounded region −0.3 < θ̂1 < 0.2. Thus, θ̂1 < θ̂0

and they are the two roots in equation (2). Now, c · u is positive so

b · u−
√

uT Au
c · u

<
b · u +

√
uT Au

c · u

Therefore, we must have

θ̂ =
b · u +

√
uT Au

c · u

as the desired maximum likelihood estimate.

Question 3

To prove Varchenko’s Formula for d = 2,m = 4, we need to show that:

1. There is exactly one real solution in each bounded region of the hyperplane arrangement {fi = 0}i∈[4].

2. There are no real solutions in each unbounded region of the hyperplane arrangement.

3. Each solution has multiplicity one.

4. The imaginary part of each solution is 0.

Proof of 1 and 2:
Given a region R of the hyperplane arrangement, we want to find the number of distinct real solutions of

the likelihood equations in (1.23) in R. Now, if any of the linear maps fi(θ1, θ2) = ai1θ1 + ai2θ2 + bi, i ∈ [4]
is negative in R, we may set a′i1 = −ai1, a′i2 = −ai2 and b′i = −bi, consider the likelihood equations (1.23)
with these new coefficients and note that the equations remain unchanged. Thus, we may assume that all
the maps fi, i ∈ [4] are positive in R, and define the log-likelihood function

l(θ1, θ2) =
4∑

i=1

ui log(ai1θ1 + ai2θ2 + bi).
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The solutions of the likelihood equations (1.23) are precisely the critical points of l(θ1, θ2).
Suppose the given region R is bounded. Since the ui are positive and the matrix A = (aij) is of rank 2,

Proposition 1.4 says that the log-likelihood function l(θ1, θ2) is strictly concave on R. Hence, either l(θ1, θ2)
attains its unique maximum on the interior of R, or it tends to its supremum on the boundary ∂R of R.
Now, as (θ1, θ2) tends to any point on ∂R, one or some of the linear maps fi will tend to zero while the
other linear maps are bounded (since R is bounded). Hence, l(θ1, θ2) =

∑
ui log(fi) tends to −∞ as (θ1, θ2)

approaches ∂R, so l(θ1, θ2) cannot tend to its supremum on ∂R. Therefore, l(θ1, θ2) has a unique critical
point in R, implying that the likelihood equations (1.23) have exactly one real solution in R.

Suppose the given region R is unbounded. To show that the likelihood equations (1.23) do not have any
solutions in R, it suffices to show that the strictly concave function l(θ1, θ2) =

∑
ui log(fi) is unbounded

in R and thus does not have any critical points in R. To prove that, it suffices to show that there exists a
subset S ⊆ R in which one of the maps fi is unbounded while the other maps fj , i 6= j are bounded below.
We first show that there is some ε > 0 such that the set

S = {(θ1, θ2) ∈ R|fi(θ1, θ2) > ε ∀i ∈ [4]}

is non-empty and unbounded. Indeed, since R is unbounded, two of the one-dimensional faces of R must
be unbounded. WLOG, let these two faces lie on the lines l1 and l2 defined by the equations f1 = 0 and
f2 = 0 respectively. Consider the line l3 defined by f1 = f2. In the case when l1 and l2 are parallel, l3 lies
right in the middle between the two lines. In the case when l1 and l2 are not parallel, l3 is an angle bisector
of the two lines. In both cases, l3 intersects R and thus cannot coincide with any of the other lines fi = 0,
i = 3, 4. Now, pick 2δ > 0 to be the smallest distance of l3 to any other line fi = 0, i ∈ [4] parallel to l3.
Next, let S be the set of points on l3 that is at least a distance of δ away from the other lines fi = 0 not
parallel to l3. S is non-empty and unbounded, because it is the result of subtracting from the unbounded l3
large-enough bounded neighborhoods of points of intersection of l3 with the other lines. Finally, some easy
linear algebra shows that the minimum distance δ of S from the lines fi = 0 corresponds to some ε > 0 such
that fi(θ1, θ2) > ε for all i ∈ [4] and (θ1, θ2) ∈ S.

Next, we show that one of the maps fi is unbounded on S. Suppose on the contrary that all the maps fi

are bounded on S. Then, S must lie in the intersection of the regions {(θ1, θ2) ∈ R| −Mi < fi(θ1, θ2) < Mi}
where the Mi are the bounds on the respective fi. Each region is a strip parallel to the line fi = 0. Now,
the matrix A is of rank 2, so there are two lines fi = 0 and fj = 0, i 6= j which are not parallel to each
other. Hence, the intersection of the strips −Mi < fi < Mi and −Mj < fj < Mj is a parallelogram that is
bounded. This contradicts the fact that the unbounded S lies in that intersection. We have shown that the
fi are bounded below on S ⊆ R and one of the fi is unbounded on S. This completes the proof that the
likelihood equations (1.23) do not have any solutions in R.

Proof of 3:
A solution (θ̂1, θ̂2) to the likelihood equations (1.23) has multiplicity more than one if and only if the

Hessian matrix (1.22) is zero at (θ̂1, θ̂2). It was shown in Proposition 1.4 that the eigenvalues of the Hessian
are strictly negative if all the ui are strictly positive. Hence, the Hessian cannot be zero, and the result
follows.

Proof of 4:
First, we show that Im(fi(θ̂1, θ̂2)) = 0 ∀i ∈ [4] if (θ̂1, θ̂2) is a solution of the likelihood equations (1.23).

4∑
i=1

ui
Im(fi)f̄i

|fi|2
=

4∑
i=1

ui
Im(fi)

fi

=
1
2

4∑
i=1

ui
fi − f̄i

fi

=
1
2

4∑
i=1

ui
(ai1θ̂1 + ai2θ̂2 + bi)− (ai1

¯̂
θ1 + ai2

¯̂
θ2 + bi)

fi

=
1
2
(

4∑
i=1

ui
ai1

fi
)(θ̂1 − ¯̂

θ1) +
1
2
(

4∑
i=1

ui
ai2

fi
)(θ̂2 − ¯̂

θ2)

= 0
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since
∑

ui
ai1
fi

=
∑

ui
ai2
fi

= 0 by the likelihood equations. Hence,

0 = Im(
4∑

i=1

ui
Im(fi)f̄i

|fi|2
) = −

4∑
i=1

ui
Im(fi)2

|fi|2
.

Because ui > 0 and |fi|2 > 0 for all i ∈ [4], we must have Im(fi) = 0 ∀i ∈ [4]. Therefore,

0 = Im


f1

f2

f3

f4

 = Im




a11 a12

a21 a22

a31 a32

a41 a42

[
θ̂1

θ̂2

]
+


b1

b2

b3

b4


 = AIm

[
θ̂1

θ̂2

]

Since A is a rank 2 matrix, we get Im(
[

θ̂1

θ̂2

]
) = 0, so (θ̂1, θ̂2) is a purely real solution.

Question 4

By Proposition 1.9, the maximum likelihood estimate p̂ satisfies

Ap̂ =
1
N

b =
1
41

 12
28
42

 .

The solution of the above linear equations is given by

p̂ =
1
41


−29
28
42
0
0
0

 + x


1
−2
0
1
0
0

 + y


1
−1
−1
0
1
0

 + z


1
0
−2
0
0
1

 = v0 + xv1 + yv2 + zv3 (3)

where x, y, z ∈ R. As x, y, z varies over R, we get the relatively open polytope PA(b). Since v1,v2,v3 lie in
the kernel of A, and by equation (1.32), i.e.

∑
u1 log(p̂i) = 0 for all u ∈ ker(A), we have the relations

p̂1p̂4 = p̂2
2, p̂1p̂5 = p̂2p̂3, p̂1p̂6 = p̂2

3.

Substituting the formulas from equation (3) for each p̂i in terms of x, y, z into the above relations, we obtain
3 quadratic equations in 3 variables x, y, z which can be solved.

Alternatively, we can use the fact from Theorem 1.10 that p̂ maximizes the strictly concave entropy
function H(p) = −

∑
pi log(pi) over PA(b). Substituting the formulas for each pi in terms of x, y, z, we get a

function H : R3 → R in terms of x, y, z which we hope to maximize over R3. A simple hill-climbing algorithm
gives us the optimal parameters

x = 0.176817
y = 0.242082
z = 0.331446

which corresponds to the estimate

(̂p) =


0.0430
0.0872
0.1194
0.1768
0.2421
0.3314


By Birch’s Theorem, this is the solution for the maximum likelihood estimate of our toric model.
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Question 5

Let λh, λt be the probabilities that the gambler’s first coin comes up heads and tails respectively. Let
ρh, ρt be the corresponding probabilities for his second coin. Let θ be the probability he picks the first coin.
Then, we have the vector of parameters π = (θ, λh, λt, ρh, ρt) satisfying λh +λt = 1 and ρh + ρt = 1, so there
are a total of three free parameters with the parameter space

Θ = ∆1 ×∆1 ×∆1.

The model is given by the polynomial map

f : R3 → R5, π 7−→ (fi)0≤i≤4, fi =
(

4
i

)
θλi

hλ4−i
t +

(
4
i

)
(1− θ)ρi

hρ4−i
t .

Our goal is to find estimates π̂ which maximize the log-likelihood function

lobs(π) =
4∑

i=0

ui log(fi(π))

To test our hypothesis for some u = (u0, . . . , u4), we compare the theoretical probability distribution f(π̂) =
(f0(π̂), . . . , f4(π̂)) with the observed distribution 1

1000u = ( 1
1000u0, . . . ,

1
1000u4). If the two distributions are

close, we can conclude that our hypothesis explains the observed data well.

Question 6

We define the hidden data by decomposing the observed data into the contributions made by each of the
gambler’s two coins, i.e. ui = ui1 + ui2 for 0 ≤ i ≤ 4. Here, ui1 is the number of times the gambler’s first
coin produced i heads when picked and thrown 4 times. Similarly, ui2 is defined for the second coin. The
hidden model is given by

F : R3 → R2×5, π 7−→ (fi1, fi2)0≤i≤4, fi1 =
(

4
i

)
θλi

hλ4−i
t , fi2 =

(
4
i

)
(1− θ)ρi

hρ4−i
t .

First, we solve the problem of maximizing the hidden log-likelihood function

lhid(π) =
4∑

i=0

ui1 log(
(

4
i

)
θλi

hλ4−i
t ) +

4∑
i=0

ui2 log(
(

4
i

)
(1− θ)ρi

hρ4−i
t )

= α1 log(λh) + α2 log(1− λh) + β1 log(ρh) + β2 log(1− ρh)
+γ1 log(θ) + γ2 log(1− θ) + c

where

α1 =
∑4

i=0 ui1i, α2 =
4∑

i=0

ui1(4− i),

β1 =
∑4

i=0 ui2i, β2 =
4∑

i=0

ui2(4− i),

γ1 =
∑4

i=0 ui1, γ2 =
4∑

i=0

ui2

c =
∑4

i=0 ui log(
(
4
i

)
).
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It is useful to note that α1 + α2 = 4γ1, β1 + β2 = γ2, γ1 + γ2 = 1000. Now, the function g(x) = a log(x) +
b log(1− x), where a, b are constants, is maximized when

0 = g′(x) =
a

x
− b

1− x
=⇒ x =

a

a + b
.

Hence, given the hidden data (ui1), (ui2), the hidden log-likelihood function is maximized when

λh =
α1

α1 + α2
, ρh =

β1

β1 + β2
, θ =

γ1

γ1 + γ2
=

γ1

1000
.

To summarize, the EM-algorithm for this problem is

Input: The observed data u = (u0, . . . , u4).

Output: A proposed maximum π̂ ∈ Θ of the log-likelihood function lobs(π).

Step 0: Pick initial parameters θ, λh, ρh. Our vector of parameters is now

π = (θ, λh, 1− λh, ρh, 1− ρh).

E-Step: Define the hidden data

ui1 = ui

(
4
i

)
θλi

hλ4−i
t(

4
i

)
θλi

hλ4−i
t +

(
4
i

)
(1− θ)ρi

hρ4−i
t

ui2 = ui

(
4
i

)
(1− θ)ρi

hρ4−i
t(

4
i

)
θλi

hλ4−i
t +

(
4
i

)
(1− θ)ρi

hρ4−i
t

M-Step: Calculate the maximum likelihood estimate for the hidden model

λ∗h =
∑4

i=0 ui1i

4
∑4

i=0 ui1

, ρ∗h =
∑4

i=0 ui2i

4
∑4

i=0 ui2

, θ∗ =
∑4

i=0 ui1

1000

Step 3: If lobs(π
∗)− lobs(π) > ε, then set π := π∗ and go back to E-Step.

Step 4: Output the parameter vector π̂ := π∗ and the corresponding probability distribution p̂ = f(π̂).

We ran the algorithm on the observed data u = (150, 150, 150, 350, 200) and tried different starting
parameters. The listing below shows some of the parameters used and the estimates obtained.

(θ, λh, ρh) = (0.5, 0.5, 0.5) f(π̂) ≈ 1
1000 (33, 177, 358, 323, 109) lobs(π̂) = −1765.5

(θ, λh, ρh) = (0.8, 0.8, 0.8) f(π̂) ≈ 1
1000 (33, 177, 358, 323, 109) lobs(π̂) = −1765.5

(θ, λh, ρh) = (0.1, 0.1, 0.1) f(π̂) ≈ 1
1000 (33, 177, 358, 323, 109) lobs(π̂) = −1765.5

(θ, λh, ρh) = (0.3, 0.6, 0.6) f(π̂) ≈ 1
1000 (33, 177, 358, 323, 109) lobs(π̂) = −1765.5

(θ, λh, ρh) = (0.3, 0.599, 0.6) f(π̂) ≈ 1
1000 (154, 140, 181, 304, 221) lobs(π̂) = −1550.6

(θ, λh, ρh) = (0.25, 0.65, 0.35) f(π̂) ≈ 1
1000 (154, 140, 181, 304, 221) lobs(π̂) = −1550.6

(θ, λh, ρh) = (0.90, 0.15, 0.45) f(π̂) ≈ 1
1000 (154, 140, 181, 304, 221) lobs(π̂) = −1550.6

It seems that when λh = ρh, the estimate with lobs(π̂) = −1765.5 is obtained; and for every other case,
the estimate with lobs(π̂) = −1550.6 is obtained. A trial running the algorithm with 1000 different random
initial parameters could not produce any result better than the latter estimate.
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