
Graphical Models
Sullivant – Algebraic Statistics – Ch. 13



Roadmap

Graph + random variable
indexed by the nodes

1

2 3

X2 y X3|X1

Implicit conditions

p(x) = p(x1)p(x2|x1)p(x3|x1)
Explicit parametrization

Directed Undirected

Multivariate 
Gaussian ? ?
Discrete ? ?



Undirected Graphs

Notation: G = (V, E), V = vertices,  
E = edges.

N(v) = neighbors of v.

X: random vector indexed by V.



Markov Properties

Pairwise Markov property:

for all

Xu y Xv | XV\{u,v}

{u, v} < E



Markov Properties

Local Markov property

for all

Xv y XV\(N(v)[v) | XN(v)

v 2 V



Markov Properties

Global Markov property

for all disjoint A, B, C such that C 
separates A and B 

XA y XB | XC



Theorem 13.1.4

Intersection axiom ⇒ the Markov properties are equivalent.

In part.: if 

for all x, then the Markov properties are equivalent for all G.
PX(x) > 0



Example: Multivariate 
Gaussian

X: multivariate Gaussian with nonsingular covariance matrix Σ

Satisfies the intersection axiom



Example: Multivariate 
Gaussian

Xu y Xv | XV\{u,v} , det⌃V\u,V\v = 0
, ⌃�1

u,v = 0



Example: Multivariate 
Gaussian

A, B, C disjoint subsets of V such 
that C does not separate A and B

⇒ there exists Σ such that X 
satisfies all global Markov 

statements but

XA 6y XB | XC
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Path not sep. by C

Rest of the graph



Directed Acyclic Graphs

Directed path

Undirected pathUndirected cycle

Collider

v

Descendants of v

Ancestors of v: an(v)

Directed cycle

Parents of v: pa(v)

Nondescendants of v: nd(v)



d-separation

for all undirected paths π between v 
and w, in induced subgraph of π 

there exists

a collider in                ,

or a non-collider in C,

C ⇢V, d-separates v,w 2V :

C[ an(C)
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there exists

a collider in                ,

or a non-collider in C,

C ⇢V, d-separates v,w 2V :

C[ an(C)



d-separation

C d-separates all pairs a ∈ A, b ∈ B

C ⇢V d-separates A,B ⇢V :
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Markov Properties



Local Markov property



Parametrized undirected 
graphical model

Density function:

C(G): set of all maximal cliques

�C : XC ! R>0 potential functions

Z: normalizing constant

"Factorizes according to G"





Proof. (: let f = 1
Z

Q
C �C and let i, j 2 V not connected by an edge.

Then f(xi, xj , xR) =
1
Z (

Q
i2C �C)(

Q
j2C �C)(

Q
i,j 62C �C)

Hence for all xi, yi, xj , yj , xR: f(xi, xj , xR)f(yi, yj , xR) = f(xi, yj , xR)f(yi, xj , xR)

Average over the yi, yj : get
f(xi,xj ,xR)
f(xi,xR) = f(xj ,xR)

f(xR)

): Let f satisfy the pairwise Markov property w.r.t. G, Let y 2 X arbitrary.

C ⇢ V  �C(xC) :=
Q

S✓C f(xS , yV \S)
(�1)|C|�|S|

Möbius inversion on the power set of V gives

It su�ces to show: �C ⌘ 1 if C is not a clique

For this, choose i, j 2 C not connected by an edge, write down �C , and use
the Markov property of i and j.

µ(V,C)



Corollary

Let P be a distribution that factors according to G. Then P satisfies 
the global Markov property on G.

Proof: the global Markov property is a closed condition and the 
statement is correct when P has positive density.



Parametric directed graphical 
model

All densities f with f(x) =
Q

j2V f(xj |xpa(j))

Idea: we always have f(x) = f(x1)f(x2|x1)f(x3|x1, x2) · · · f(xn|x1, . . . , xn�1)

"Recursive Factorization Property"

But the graph says that the information from the parents su�ces.

Here, the ordering of the vertices respects parenthood.



Proof. ()) Let f factorize. Then it satisfies the global Markov property

Indeed, let C d-separate A, B, W.l.o.g. V = an(A [ B [C)

Then C separates A and B in the moralization Gmor of G

{

Moralization makes { j} [ pa( j) into a clique, hence f factorizes according to Gmor

By the Corollary, XA y XB|XC

(() carry out the Idea f (x) = f (x1) f (x2|x1) · · · f (xn|x1, . . . , xn)



Theorem

     For any random variable X, directed graph G:

Local directed Markov w.r.t. G ⇒ Global directed Markov w.r.t. G)
Recursive factorization property w.r.t. G

)



Example: discrete case
1 2

3
Xi 2 {0, 1}

f(x1, x2, x3) = f(x1)f(x2)f(x3|x1, x2)

p0,0,0 = ✓(1)0 ✓(2)0 ✓(3)0|0,0

p0,0,1 = ✓(1)0 ✓(2)0 ✓(3)1|0,0

p0,1,0 = ✓(1)0 ✓(2)1 ✓(3)0|0,1

p0,1,1 = ✓(1)0 ✓(2)1 ✓(3)1|0,1

p1,0,0 = ✓(1)1 ✓(2)0 ✓(3)0|1,0

p1,0,1 = ✓(1)1 ✓(2)0 ✓(3)1|1,0

p1,1,0 = ✓(1)1 ✓(2)1 ✓(3)0|1,1

p1,1,1 = ✓(1)1 ✓(2)1 ✓(3)1|1,1

�1 ⇥�1 ⇥�4
1 ! �7



Multivariate Gaussian case

X multivariate Gaussian ) Xi univariate Gaussian

Xj |Xpa(j) multivariate Gaussian

f(x) =
Q

j f(xj |xpa(j)) ) Xi =
P

j2pa(j) �i,jXj + "i

Where "i ⇠ N (⌫i,!i)

We have X = (Id�⇤)�T "

Where ⇤i,j = �i,j if (i, j) 2 E, 0 else.

With ⌦ = diag(!1, . . . ,!n)

) ⌃ = (Id�⇤)�T⌦(Id�⇤)�1



Ideal Iglob of conditional independent statements for X ⇠ N (µ,⌃):

Ideal Iglob =
P

Ayd B|C IAyB|C

IAyB|C = h(|C| + 1)-minors of ⌃A[C,B[Ci

Question: when does Iglob = IG?

MparamGaussian = image of (⇤,⌦) 7! ⌃

Ideal of the closure: IG



Example

1

2

3

4
5

IG = Iglob + hdet(⌃12,45)i
det(⌃12,45) 2 IG \ Iglob



Examples of graphical models
... ...

...

Markov chain Hidden Markov model

Ising model



(Guerra, Eisenhauer, Pereira: Synthesising Soil Ecosystem Multifunctionality)

Talk to Eliana or me about this!


