Graphical Models

Sullivant - Algebraic Statistics - Ch. 13

Graph + random variable indexed by the nodes

Implicit conditions

$$
X_{2} \Perp X_{3} \mid X_{1}
$$

Explicit parametrization

$$
p(x)=p\left(x_{1}\right) p\left(x_{2} \mid x_{1}\right) p\left(x_{3} \mid x_{1}\right)
$$

Undirected Graphs

Notation: $G=(V, E), V=$ vertices,

$$
E=\text { edges. }
$$

$N(v)=$ neighbors of v.
X : random vector indexed by V.

Markov Properties

Pairwise Markov property:

$$
\begin{gathered}
X_{u} \Perp X_{v} \mid X_{V \backslash\{u, v\}} \\
\text { for all } \\
\{u, v\} \notin E
\end{gathered}
$$

Markov Properties

Local Markov property

$$
X_{v} \Perp X_{V \backslash(N(v) \cup v)} \mid X_{N(v)}
$$

for all
$v \in V$

Markov Properties

Global Markov property

$$
X_{A} \Perp X_{B} \mid X_{C}
$$

for all disjoint A, B, C such that C separates A and B

Theorem 13.1.4

Intersection axiom \Rightarrow the Markov properties are equivalent.

$$
\begin{aligned}
& \text { In part.: if } \\
& P_{X}(x)>0
\end{aligned}
$$

for all x, then the Markov properties are equivalent for all G.

Example: Multivariate Gaussian

X : multivariate Gaussian with nonsingular covariance matrix Σ
Satisfies the intersection axiom

Example: Multivariate Gaussian

$$
\begin{aligned}
X_{u} \Perp X_{v} \mid X_{V \backslash\{u, v\}} & \Leftrightarrow \operatorname{det} \Sigma_{V \backslash u, V \backslash v}=0 \\
& \Leftrightarrow \Sigma_{u, v}^{-1}=0
\end{aligned}
$$

Example: Multivariate Gaussian

A, B, C disjoint subsets of V such that C does not separate A and B
\Rightarrow there exists Σ such that X satisfies all global Markov statements but

$$
X_{A} \not \Perp X_{B} \mid X_{C}
$$

Rest of the graph

Directed Acyclic Graphs

Directed path

Undirected cycle

Undirected path

Parents of $v: \operatorname{pa}(v)$ Ancestors of $v: \operatorname{an}(v)$

d-separation

$C \subset V$, d-separates $v, w \in V:$
for all undirected paths π between v and w, in induced subgraph of π there exists
a collider in $C \cup$ an (C),

or a non-collider in C,

d-separation

$C \subset V$, d-separates $v, w \in V:$
for all undirected paths π between v and w, in induced subgraph of π there exists
a collider in $C \cup$ an (C),

or a non-collider in C,

d-separation

$C \subset V$ d-separates $A, B \subset V:$

C d-separates all pairs $a \in A, b \in B$

d-separation

$C \subset V$, d-separates $v, w \in V:$
for all undirected paths π between v and w, in induced subgraph of π there exists
a collider in $C \cup$ an (C),
or a non-collider in C,

d-separation

$C \subset V$, d-separates $v, w \in V:$
for all undirected paths π between v and w, in induced subgraph of π there exists
a collider in $C \cup$ an (C),
or a non-collider in C,

d-separation

$C \subset V$, d-separates $v, w \in V:$
for all undirected paths π between v and w, in induced subgraph of π there exists
a collider in $C \cup$ an (C),
or a non-collider in C,

d-separation

$C \subset V$, d-separates $v, w \in V:$
for all undirected paths π between v and w, in induced subgraph of π there exists

a collider in $C \cup$ an (C),
or a non-collider in C,

d-separation

$C \subset V$, d-separates $v, w \in V:$
for all undirected paths π between v and w, in induced subgraph of π there exists
a collider in $C \cup$ an (C),
or a non-collider in C,

d-separation

$C \subset V$, d-separates $v, w \in V:$
for all undirected paths π between v and w, in induced subgraph of π there exists a collider in $C \cup$ an (C), or a non-collider in C,

d-separation

$C \subset V$, d-separates $v, w \in V:$
for all undirected paths π between v and w, in induced subgraph of π there exists a collider in $C \cup$ an (C), or a non-collider in C,

Markov Properties

Definition 13.1.9. Let $G=(V, E)$ be a directed acyclic graph.
(i) The directed pairuise Markov property associated to G consists of all conditional independence statements $X_{u} \Perp X_{v} \mid X_{\mathrm{nd}(u) \backslash\{v\}}$ where (u, v) is not an edge of G.
(ii) The directed local Markov property associated to G consists of all conditional independence statements $X_{v} \Perp X_{\mathrm{nd}(v) \backslash \mathrm{pa}(v)} \mid X_{\mathrm{pa}(v)}$ for all $v \in V$.
(iii) The directed global Markov property associated to G consists of all conditional independence statements $X_{A} \Perp X_{B} \mid X_{C}$ for all disjoint sets A, B, and C such that C d-separates A and B in G.

Local Markov property

Parametrized undirected graphical model

Density function:

$$
f(x)=\frac{1}{Z} \prod_{C \in \mathcal{C}(G)} \phi_{C}\left(x_{C}\right) \quad \text { "Factorizes according to } G "
$$

$\mathcal{C}(G)$: set of all maximal cliques
$\phi_{C}: X_{C} \rightarrow \mathbb{R}_{>0}$ potential functions
Z : normalizing constant

$$
f\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=\frac{1}{Z} \phi_{123}\left(x_{1}, x_{2}, x_{3}\right) \phi_{25}\left(x_{2}, x_{5}\right) \phi_{34}\left(x_{3}, x_{4}\right) \phi_{45}\left(x_{4}, x_{5}\right) .
$$

Theorem 13.2.3 (Hammersley-Clifford). A continuous positive probability density f on \mathcal{X} satisfies the pairwise Markov property on the graph G if and only if it factorizes according to G.

Proof. \Leftarrow : let $f=\frac{1}{Z} \prod_{C} \phi_{C}$ and let $i, j \in V$ not connected by an edge.

$$
\text { Then } f\left(x_{i}, x_{j}, x_{R}\right)=\frac{1}{Z}\left(\prod_{i \in C} \phi_{C}\right)\left(\prod_{j \in C} \phi_{C}\right)\left(\prod_{i, j \notin C} \phi_{C}\right)
$$

Hence for all $x_{i}, y_{i}, x_{j}, y_{j}, x_{R}: f\left(x_{i}, x_{j}, x_{R}\right) f\left(y_{i}, y_{j}, x_{R}\right)=f\left(x_{i}, y_{j}, x_{R}\right) f\left(y_{i}, x_{j}, x_{R}\right)$
Average over the y_{i}, y_{j} : get $\frac{f\left(x_{i}, x_{j}, x_{R}\right)}{f\left(x_{i}, x_{R}\right)}=\frac{f\left(x_{j}, x_{R}\right)}{f\left(x_{R}\right)}$
\Rightarrow : Let f satisfy the pairwise Markov property w.r.t. G, Let $y \in \mathcal{X}$ arbitrary.

$$
C \subset V \rightsquigarrow \phi_{C}\left(x_{C}\right):=\prod_{S \subseteq C} f\left(x_{S}, y_{V \backslash S}\right)^{(-1)^{|C|-|S|}}
$$

Möbius inversion on the power set of V gives

$$
f(x)=\prod_{C \subseteq V} \phi_{C}\left(x_{C}\right)^{\mu(V, C)}
$$

It suffices to show: $\phi_{C} \equiv 1$ if C is not a clique

For this, choose $i, j \in C$ not connected by an edge, write down ϕ_{C}, and use the Markov property of i and j.

Corollary

Let P be a distribution that factors according to G. Then P satisfies the global Markov property on G.

Proof: the global Markov property is a closed condition and the statement is correct when P has positive density.

Parametric directed graphical model

All densities f with $f(x)=\prod_{j \in V} f\left(x_{j} \mid x_{\mathrm{pa}(j)}\right)$
"Recursive Factorization Property"

Idea: we always have $f(x)=f\left(x_{1}\right) f\left(x_{2} \mid x_{1}\right) f\left(x_{3} \mid x_{1}, x_{2}\right) \cdots f\left(x_{n} \mid x_{1}, \ldots, x_{n-1}\right)$
Here, the ordering of the vertices respects parenthood.
But the graph says that the information from the parents suffices.

Theorem 13.2.10 (Recursive Factorization). A probability density satisfies the recursive factorization property (13.2.2) associated to the directed acyclic graph G if and only if it satisfies the directed local Markov property associated to G.

Proof. (\Rightarrow) Let f factorize. Then it satisfies the global Markov property Indeed, let C d-separate A, B, W.1.o.g. $V=\operatorname{an}(A \cup B \cup C)$

Then C separates A and B in the moralization $G^{\text {mor }}$ of G

Moralization makes $\{j\} \cup \mathrm{pa}(j)$ into a clique, hence f factorizes according to G^{mor} By the Corollary, $X_{A} \Perp X_{B} \mid X_{C}$
(\Leftarrow) carry out the Idea $f(x)=f\left(x_{1}\right) f\left(x_{2} \mid x_{1}\right) \cdots f\left(x_{n} \mid x_{1}, \ldots, x_{n}\right)$

Theorem

For any random variable X, directed graph G :

Local directed Markov w.r.t. $G \Rightarrow$ Global directed Markov w.r.t. G

Recursive factorization property w.r.t. G

Example: discrete case

$$
X_{i} \in\{0,1\}
$$

$$
f\left(x_{1}, x_{2}, x_{3}\right)=f\left(x_{1}\right) f\left(x_{2}\right) f\left(x_{3} \mid x_{1}, x_{2}\right)
$$

$$
\begin{array}{ll}
p_{0,0,0}=\theta_{0}^{(1)} \theta_{0}^{(2)} \theta_{0 \mid 0,0}^{(3)} & p_{1,0,0}=\theta_{1}^{(1)} \theta_{0}^{(2)} \theta_{011,0}^{(3)} \\
p_{0,0,1}=\theta_{0}^{(1)} \theta_{0}^{(2)} \theta_{100,0}^{(3)} & p_{1,0,1}=\theta_{1}^{(1)} \theta_{0}^{(2)} \theta_{1|1|, 0}^{(3)} \\
p_{0,1,0}=\theta_{0}^{(1)} \theta_{1}^{(2)} \theta_{0 \mid 0,1}^{(3)} & p_{1,1,0}=\theta_{1}^{(1)} \theta_{1}^{(2)} \theta_{0 \mid 1,1}^{(3)} \\
p_{0,1,1}=\theta_{0}^{(1)} \theta_{1}^{(2)} \theta_{1 \mid 0,1}^{(3)} & p_{1,1,1}=\theta_{1}^{(1)} \theta_{1}^{(2)} \theta_{1 \mid 1,1}^{(3)}
\end{array}
$$

$$
\Delta_{1} \times \Delta_{1} \times \Delta_{1}^{4} \rightarrow \Delta_{7}
$$

Multivariate Gaussian case

X multivariate Gaussian $\Rightarrow X_{i}$ univariate Gaussian $X_{j} \mid X_{\mathrm{pa}(j)}$ multivariate Gaussian

$$
\begin{aligned}
f(x)=\prod_{j} f\left(x_{j} \mid x_{\mathrm{pa}(j)}\right) \Rightarrow & X_{i}=\sum_{j \in \operatorname{pa}(j)} \lambda_{i, j} X_{j}+\varepsilon_{i} \\
& \text { Where } \varepsilon_{i} \sim \mathcal{N}\left(\nu_{i}, \omega_{i}\right)
\end{aligned}
$$

We have $X=(\operatorname{Id}-\Lambda)^{-T} \varepsilon$
Where $\Lambda_{i, j}=\lambda_{i, j}$ if $(i, j) \in E, 0$ else.

$$
\Rightarrow \Sigma=(\operatorname{Id}-\Lambda)^{-T} \Omega(\operatorname{Id}-\Lambda)^{-1}
$$

With $\Omega=\operatorname{diag}\left(\omega_{1}, \ldots, \omega_{n}\right)$

Proposition 13.2.12. The parametrized Gaussian graphical model associated to the directed acyclic graph G consists of all pairs $(\mu, \Sigma) \in \mathbb{R}^{m} \times P D_{m}$ such that $\Sigma=(I d-\Lambda)^{-T} \Omega(I d-\Lambda)^{-1}$ for some Ω diagonal with positive entries and upper triangular $\Lambda \in \mathbb{R}^{E}$.

$$
\mathcal{M}_{\text {paramGaussian }}=\text { image of }(\Lambda, \Omega) \mapsto \Sigma
$$

Ideal of the closure: I_{G}
Ideal $I_{\text {glob }}$ of conditional independent statements for $X \sim \mathcal{N}(\mu, \Sigma)$:

$$
\begin{gathered}
\text { Ideal } I_{\text {glob }}=\sum_{A \Perp_{d} B \mid C} I_{A \Perp B \mid C} \\
I_{A \Perp B \mid C}=\left\langle(|C|+1) \text {-minors of } \Sigma_{A \cup C, B \cup C}\right\rangle
\end{gathered}
$$

Question: when does $I_{\mathrm{glob}}=I_{G}$?

Example

$$
\begin{gathered}
\operatorname{det}\left(\Sigma_{12,45}\right) \in I_{G} \backslash I_{\mathrm{glob}} \\
I_{G}=I_{\mathrm{glob}}+\left\langle\operatorname{det}\left(\Sigma_{12,45}\right)\right\rangle
\end{gathered}
$$

Examples of graphical models

Markov chain

Hidden Markov model

(Guerra, Eisenhauer, Pereira: Synthesising Soil Ecosystem Multifunctionality)

Talk to Eliana or me about this!

