Math 275: Introduction to Non-Linear Algebra

Bernd Sturmfels, UC Berkeley, Spring 2014 Homework # 7, due Monday, March 10

- 1. The symmetry group of a regular square in \mathbb{R}^2 acts naturally on $\mathbb{R}[x, y]$. Determine the subring of invariants. Start by guessing some invariants in small degree, and check completeness using the Molien series.
- 2. Prove Noether's degree bound: If G is a finite subgroup of $GL(n, \mathbb{C})$ then the invariant ring $\mathbb{C}[x_1, \ldots, x_n]^G$ is generated as a \mathbb{C} -algebra by polynomials of degree at most the group order |G|.
- 3. The multiplicative group $G = \mathbb{C}^*$ acts on the polynomial ring $\mathbb{C}[a, b, c, d]$ by sending a to ta, b to t^3b , c to c/t^2 , and d to d/t^2 . Determine a finite generating set for the invariant ring $\mathbb{C}[a, b, c, d]^G$.
- 4. Consider the action of $SL_2(\mathbb{C})$ by simultaneous conjugation on the space of pairs of 2×2-matrices. What is the ring of invariants?
- 5. The action of $SL_3(\mathbb{C})$ on the space $V = S^4 \mathbb{C}^3$ of ternary quartics has an invariant of degree 3. Write this invariant explicitly as a polynomial in 15 unknowns. Can you guess what its geometric meaning might be?
- 6. Give an example of a real $2 \times 2 \times 2$ -tensor whose tensor rank over \mathbb{C} is 2 but whose tensor rank over \mathbb{R} is 3. (Hint: [De Silva & Lim, 2008]).

7. The matrix
$$M = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$
 has rank 3. Prove that the non-negative

rank of M is equal to 4; i.e. show that M cannot be written as the product of a non-negative 4×3 -matrix and a non-negative 3×4 -matrix.