Math 275: Introduction to Non-Linear Algebra

Bernd Sturmfels, UC Berkeley, Spring 2014
Homework \# 7, due Monday, March 10

1. The symmetry group of a regular square in \mathbb{R}^{2} acts naturally on $\mathbb{R}[x, y]$. Determine the subring of invariants. Start by guessing some invariants in small degree, and check completeness using the Molien series.
2. Prove Noether's degree bound: If G is a finite subgroup of GL(n, \mathbb{C}) then the invariant ring $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]^{G}$ is generated as a \mathbb{C}-algebra by polynomials of degree at most the group order $|G|$.
3. The multiplicative group $G=\mathbb{C}^{*}$ acts on the polynomial ring $\mathbb{C}[a, b, c, d]$ by sending a to $t a, b$ to $t^{3} b, c$ to c / t^{2}, and d to d / t^{2}. Determine a finite generating set for the invariant ring $\mathbb{C}[a, b, c, d]^{G}$.
4. Consider the action of $S L_{2}(\mathbb{C})$ by simultaneous conjugation on the space of pairs of 2×2-matrices. What is the ring of invariants?
5. The action of $S L_{3}(\mathbb{C})$ on the space $V=S^{4} \mathbb{C}^{3}$ of ternary quartics has an invariant of degree 3. Write this invariant explicitly as a polynomial in 15 unknowns. Can you guess what its geometric meaning might be?
6. Give an example of a real $2 \times 2 \times 2$-tensor whose tensor rank over \mathbb{C} is 2 but whose tensor rank over \mathbb{R} is 3 . (Hint: [De Silva \& Lim, 2008]).
7. The matrix $M=\left[\begin{array}{llll}1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1\end{array}\right]$ has rank 3. Prove that the non-negative rank of M is equal to 4 ; i.e. show that M cannot be written as the product of a non-negative 4×3-matrix and a non-negative 3×4-matrix.
