Math 275: Introduction to Non-Linear Algebra

Bernd Sturmfels, UC Berkeley, Spring 2014
Homework \# 6, due Monday, March 3

1. Minimize the trace over all positive semidefinite 3×3-matrices whose off-diagonal entries are 5,6 and 7. Express your answer in radicals.
2. The following simple polynomial system has no real solutions:

$$
x^{2}+y^{2} \leq 1 \quad \text { and } \quad x y>5
$$

Find a certificate as described in the Real Nullstellensatz.
3. Let I be the ideal in $\mathbb{R}[x, y, z]$ generated by the polynomials

$$
x^{2}+y^{2}+z^{2}-1, x y z-5 \text { and } x+2 y+3 z-7
$$

Write -1 as a sum of squares modulo I.
4. Draw the spectrahedron $\left\{(x, y, z) \in \mathbb{R}^{3}:\left[\begin{array}{llll}1 & x & y & z \\ x & 1 & z & y \\ y & z & 1 & x \\ z & y & x & 1\end{array}\right] \succeq 0\right\}$.
5. Show that the set of non-negative degree 6 polynomials

$$
a x^{6}+b x^{5}+c x^{4}+d x^{3}+e x^{2}+f x+g
$$

is a full-dimensional convex cone in the coefficient space \mathbb{R}^{7}. Find an explicit polynomial that vanishes on the boundary of this cone.
6. Consider the following polynomial of degree 6 in two variables:

$$
f(x, y)=x^{4} y^{2}+x^{2} y^{4}-3 x^{2} y^{2}+1
$$

Prove that $f(x, y)$ is non-negative on \mathbb{R}^{2} but it is not a sum of squares.
7. True or false: If $g(x, y)$ is a polynomial of degree 4 that is nonnegative at all points in \mathbb{R}^{2} then $g(x, y)$ can be written as a sum of squares.

