Math 275: Introduction to Non-Linear Algebra

Bernd Sturmfels, UC Berkeley, Spring 2014

Homework \# 5, due Monday, February 24

1. Compute the irreducible polynomial in two variables that vanishes on the 5 -ellipse with foci $(0,0),(1,0),(2,1),(1,2)$ and $(0,1)$ and radius 7 .
2. A calculus student is asked to find the minimum of the polynomial

$$
f(x)=x^{6}-21 x^{5}+175 x^{4}-735 x^{3}+1624 x^{2}-1764 x+713 .
$$

Express this problem as a semidefinite program (SDP), solve that SDP, and try to draw a picture of the spectrahedron of all feasible solutions.
3. Prove Proposition 7.1 in CBMS: Solving Systems of Polynomial Eqns.
4. The discriminant of the characteristic polynomial of a symmetric 3×3 matrix is a homogeneous polynomial Δ of degree six in six variables. How many terms does Δ have? How many faces (of dimensions $0,1,2,3$ 4,5 respectively) does the Newton polytope of Δ have? What is the dimension of the real algebraic variety defined by the equation $\Delta=0$?
5. True or false: Every positive semidefinite symmetric matrix A with entries in the rational numbers has a Cholesky decomposition $A=$ $B \cdot B^{T}$ where the entries of the real matrix B are expressed in radicals.

