Math 275: Introduction to Non-Linear Algebra

Bernd Sturmfels, UC Berkeley, Spring 2014

Homework \# 4, due Wednesday, February 19

1. [CBMS 1.8] Compute all 5 Puiseux series solutions $x(t)$ of the equation

$$
x^{5}+t x^{4}+t^{3} x^{3}+t^{6} x^{2}+t^{10} x+t^{15}=0
$$

In each case, guess a formula (in terms of n) for the coefficient of t^{n}.
2. Let P, Q, R be the three square facets of the 3 -cube $[0,1]^{3}$ adjacent to $(0,0,0)$. Determine the polynomial $V(\lambda)=\operatorname{volume}\left(\lambda_{1} P+\lambda_{2} Q+\lambda_{3} R\right)$. Can you generalize your result to d facets of the d-dimensional cube?
3. [CBMS 3.2] Draw the Newton polytope of the polynomial
$f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}-x_{2}\right)\left(x_{1}-x_{3}\right)\left(x_{1}-x_{4}\right)\left(x_{2}-x_{3}\right)\left(x_{2}-x_{4}\right)\left(x_{3}-x_{4}\right)$.
4. Let P be the square and Q the triangle in our running example. How many distinct mixed subdivisions (as in Figure 3.1) does $P+Q$ have?
5. Find two tetrahedra in \mathbb{R}^{3} whose Minkowski sum has 16 vertices.
6. [CBMS 3.4] Compute the first three terms in each of the four solutions $(x(t), y(t))$ over the Pusieux series $\mathbb{C}\{\{t\}\}$ to the system of two equations

$$
\begin{aligned}
& t^{2} x^{2}+t^{5} x y+t^{11} y^{2}+t^{17} x+t^{23} y+t^{31}=0 \\
& t^{3} x^{2}+t^{7} x y+t^{13} y^{2}+t^{19} x+t^{29} y+t^{37}=0
\end{aligned}
$$

7. Write the precise statements of Bézout's Theorem and Bernstein's Theorem for n equations in n variables. Derive the former from the latter.
