Math 275: Introduction to Non-Linear Algebra

Bernd Sturmfels, UC Berkeley, Spring 2014

Homework \# 3, due Monday, February 10

1. Give an example of a polynomial ideal I such that I is not radical but I is generated by a set of polynomials all of whose terms are squarefree.
2. Let X be an $n \times n$-matrix of unknowns and consider the ideal $I \subset \mathbb{Q}[X]$ that is generated by the entries of X^{n}. Determine generators of $\operatorname{Rad}(I)$.
3. Which monomial ideals are primary? Find a combinatorial criterion that is necessary and sufficient. Prove that your criterion is correct.
4. The software Bertini can compute primary decompositions numerically. Download this software on your computer and try one example.
5. Which 2×2-matrices X satisfy the equation $X^{2}=2 X$?

Formulate this question in the language of primary decomposition and solve it. Same question for 3×3-matrices. How about $n \times n$-matrices?
6. [CBMS, 5.2] Let P be a prime ideal and m a positive integer. Show that P is a minimal prime of P^{m}. Give an example where P^{m} is not primary.
7. [CBMS, 5.8] Find a 3×4 integer matrix with all non-zero entries such that all 3×3-subpermanents are zero. What about larger sizes?
8. [CBMS 5.11] For positive integers d and e consider the ideal

$$
I=\left\langle x_{1}^{d} x_{2}-x_{3}^{d} x_{4}, x_{1} x_{2}^{e}-x_{4}^{e+1}\right\rangle
$$

Find a primary decomposition of I and a minimal generating set for the radical of I. What are the degrees of its generators?

