Math 275: Introduction to Non-Linear Algebra

Bernd Sturmfels, UC Berkeley, Spring 2014 Homework # 2, due Monday, February 3

- 1. Let α and β be the unique positive real roots of the polynomials $f(x) = x^3 + 3x^2 + 3x 1$ and $g(x) = 8x^4 16x^3 + 12x^2 4x 3$ respectively.
 - Express α and β in radicals, and in floating point approximations.
 - Compute the minimal polynomials of $\alpha + \beta$, $\alpha \beta$, $\alpha \cdot \beta$, and α/β .
- 2. Explain the difference between the lexicographic term order and the reverse lexicographic term order. How are they applied? What do they mean geometrically? Illustrate your points with some examples.
- 3. Determine the ideal of polynomial relations among the ...
 - ... ten 2×2 -minors of a 2×5 -matrix;
 - ... seven principal minors of a symmetric 3×3 -matrix;
 - ... ten off-diagonal entries of a symmetric 5×5 -matrix of rank 2.
- 4. Determine the prime ideal of polynomial relations among the traces of the eight matrix words $A_i A_j A_k$ where A_0 and A_1 are 2 × 2-matrices. How is this question related to the study of *Hidden Markov Models*?
- 5. [CBMS 4.6] Use Sylvester's formula for Res_{3.3.3} to solve the equations

$$(x+y-z)(x+2y-3z)(x+4y-9z) = \alpha (x-y+z)(x-2y+3z)(x-4y+9z) = \beta (-x+y+z)(-x+2y+3z)(-x+4y+9z) = \gamma$$

where α, β, γ are parameters. How does x depend on these parameters? Show that there is a unique real solution for $\alpha = 13, \beta = 17, \gamma = 19$.

6. [CBMS 4.7] Give an exact formula for the resultant of three bilinear equations in (x, y). Now do the same for three biquadratic equations.