Math 275: Introduction to Non-Linear Algebra

Bernd Sturmfels, UC Berkeley, Spring 2014

Homework \# 1, due Monday, January 27

1. Prove the Shape Lemma, which describes the structure of the lexicographic Gröbner bases of a zero-dimensional radical ideal.
2. Let $n=4$ and consider the ideal I generated by the power sums

$$
x_{1}^{i}+x_{2}^{i}+x_{3}^{i}+x_{4}^{i} \quad \text { for } i=1,2,3,4 .
$$

Pick a term order and compute the reduced Gröbner basis of I. What are the standard monomials? What is the variety $V(I)$? Describe the companion matrices $T_{1}, T_{2}, T_{3}, T_{4}$ and show that they are nilpotent.
3. Prove Dickson's Lemma: Every infinite set of monomials in n variables contains two monomials such that one monomial divides the other.
4. [CBMS 2.1] Let $A=\left(a_{i j}\right)$ be a non-singular $n \times n$-matrix whose entries are positive integers, and consider the system of equations

$$
\prod_{j=1}^{n} x_{j}^{a_{1 j}}=\prod_{j=1}^{n} x_{j}^{a_{2 j}}=\cdots=\prod_{j=1}^{n} x_{j}^{a_{n j}}=1
$$

How many complex solutions do these equations have?
5. Pick three random cubic polynomials f, g, h in $\mathbb{Q}[x, y]$, let $I=\langle f, g\rangle$, pick a term order of your choice, and compute the symmetric matrix that represents the trace form B_{h}. What is the signature of your B_{h} ?
6. [CBMS 2.7] How many distinct vectors $(x, y, z) \in \mathbb{R}^{3}$ satisfy the system

$$
x^{3}+z=2 y^{2}, y^{3}+x=2 z^{2}, \quad z^{3}+y=2 x^{2} ?
$$

7. [CBMS 2.10] Consider a polynomial system which has infinitely many complex zeros but only finitely many of them have all their coordinates distinct. How would you compute those zeros with distinct coordinates?
