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1 A model for biochemical reaction networks

We consider a model introduced by Craciun, Pantea and Rempala [2] for identifying biochemical reaction
networks. A motivation for the model can be found in [2]; we will focus only on its properties. Suppose we
are given x1, . . . , xm ∈ Rd in convex position such that there is some hypersurface containing all of the xi.
Then every subset σ ⊂ [d], |σ| = d defines a polyhedral cone Cσ ⊂ Rd. We will assume for the moment that
all

(
m
d

)
of these cones are full-dimensional (which is the case for generic xi) and denote the set of these cones

by Rd.

Let {Si; i = 1, . . . , n} be the set of full-dimensional cones that can be obtained by intersecting elements of
Rd. These will be the states of our model and we will refer to them as chambers. The model is parameterized
by θ ∈ Rm and the weight (ie. the non-normalized probability) of the i-th state is defined to be

gi(θ) = vol(Si)
∑

Cσ∈Rd

Cσ⊃Si

1
vol(Cσ)

∏
j∈σ

θj . (1)

The article [2] used a hill-climbing method to solve the maximum likelihood equations in this model. We
will study the case d = 3, m = 5 using algebraic techniques in some detail and we hope, by doing so, to gain
a better understanding of the structure of the model.

For this particular example, we can give a detailed combinatorial description of the cones Cσ and Si.
There are 10 cones Cσ and they come in 2 different flavors. Assume the xi are numbered in a clockwise
order. Then, working modulo 5, we have either σ ≡ {a, a + 1, a + 2} or σ ≡ {a, a + 2, a + 3}. There are five
instances of each flavor, corresponding to the five choices of a. So that our notation is explicit regarding the
flavor of each of these cones, we write Aa = C{a−1,a,a+1} and Ba = C{a,a+2,a+3}.

Turning to the cones Si, there are 11 cones in three flavors. Five of the Si share a 2-dimensional face with
the cone generated by the xj ; each of these cones is contained in three Cσ cones and we define Tab = Si if the
2-dimensional face in question is the cone generated by xa and xb. Five of the Si share only a 1-dimensional
face with the cone generated by the xj ; each of these cones is contained in four Cσ cones and we define
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Figure 1: The chambers of our model and their labels.

Ua = Si if this 1-dimensional face is the ray generated by xa. The final Si cone lies entirely in the interior of
the cone generated by the xj and is contained in five Cσ cones. We define V to be this cone. This labeling
is shown in Figure 1.

We can write down an implicit form of the model using a computer algebra package (in this case,
Singular). The ideal generating the model in P10 is〈 p5

vol(S5)
− p6

vol(S6)
− p10

vol(S10)
+

p11

vol(S11)
, (2)

p4

vol(S4)
− p9

vol(S9)
− p10

vol(S10)
+

p11

vol(S11)
, (3)

p3

vol(S3)
− p4

vol(S4)
− p8

vol(S8)
+

p10

vol(S10)
, (4)

p2

vol(S2)
− p7

vol(S7)
− p8

vol(S8)
+

p11

vol(S11)
, (5)

p1

vol(S1)
− p6

vol(S6)
− p7

vol(S7)
+

p11

vol(S11)
, (6)

q(p1, . . . , p11)
〉

(7)

where (p1, . . . , p11) are the probabilities assigned to (T12, T23, T34, T45, T51, U1, . . . , U5, V ) respectively and q
is a homogeneous polynomial of degree 6 with 16 terms. We don’t give q explicitly because its coefficients
depend in a complex way on the volumes of the cones Si and Cσ (each coefficient is a degree 16 polynomial
in 1/ vol(Si) and 1/ vol(Cσ)). Note that the coefficients of the first 5 generators of the model have a very
simple dependence on the volumes of the cones. We will see that this is true in general for any m and d.
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We can write out an incidence matrix showing which Si are contained in which Cσ:

A1 A2 A3 A4 A5 B1 B2 B3 B4 B5

T12 1 1 0 0 0 0 0 0 1 0
T23 0 1 1 0 0 0 0 0 0 1
T34 0 0 1 1 0 1 0 0 0 0
T45 0 0 0 1 1 0 1 0 0 0
T15 1 0 0 0 1 0 0 1 0 0
U1 1 0 0 0 0 1 0 1 1 0
U2 0 1 0 0 0 0 1 0 1 1
U3 0 0 1 0 0 1 0 1 0 1
U4 0 0 0 1 0 1 1 0 1 0
U5 0 0 0 0 1 0 1 1 0 1
V 0 0 0 0 0 1 1 1 1 1

Let M be this matrix and let M̃ be the matrix obtained from M by multiplying each row by the volume of its
associated cone and dividing each column by the volume of its associated cone. Then the parametrization (1)
is given by

 g1(θ)
...

g10(θ)

 = M̃



θ5θ1θ2

θ1θ2θ3

θ2θ3θ4

θ3θ4θ5

θ4θ5θ1

θ1θ3θ4

θ2θ4θ5

θ3θ5θ1

θ4θ1θ2

θ5θ2θ3


.

It follows that the model lives in M̃R10 ⊂ R11. We can compute that rank(M̃) = rank(M) = 6 (since
to obtain M̃ from M , we only multiplied rows and columns by non-zero numbers) and that the first five
generators of (2) are linearly independent and orthogonal to every column of M̃ . That is, all of the linear
constraints in the ideal (2) are explained by the fact that our model is the linear transformation of some
other ideal in R10, where the linear transformation has reduced rank.

The rank of the matrix M was studied in [1]. Specifically, the rank of M is
(
m
2

)
for generic points

x1, . . . , xm and the general formula for the rank of M is given by(
m

2

)
+

d−1∑
k=1

(−1)k
∑
Qk

(
m(Qk) − 1

d

)
(8)

where Qk ranges over all k-dimensional affine subspaces spanned by subsets of x1, . . . , xm and m(Qk) is the
number of points in {x1, . . . , xm} that lie in Qk. Also, for the above formula to make sense, we define

(
a
b

)
to

be zero whenever a < b. For generic points, m(Qk) = k for all affine subspaces Qk and therefore (8) reduces
to

(
m
2

)
.

In addition to studying the rank, [1] also describes explicitly the linear relations between the rows of M
(at least, under the assumption that every extreme point of every chamber, with the exception of the original
points x1, . . . , xm lies on exactly n distinct affine hyperplanes generated by subsets of x1, . . . , xm). Rather
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Figure 2: Linear relations between the rows of M

than describe these linear relations in detail, we will just say that all alternating sums of adjacent chambers
are zero and give an explanatory picture (Figure 2).

2 Maximum likelihood estimation

Suppose we observe a large number of points in R3 and we generate a vector of counts (u1, . . . , u11) ∈ N11

where ui is the number of data points in the cone Si. We would like to estimate the parameter θ by
maximizing the log-likelihood function

`(θ) =
11∑

i=1

ui log gi(θ)

subject to the constraints θi ≥ 0 and
∑

i gi(θ) = 1. There are, broadly speaking, two exact approaches to this
maximization problem: an explicit approach using the parameterization g and an implicit approach using
generators of the ideal cut out by g. Neither of these approaches appears to be computationally feasible
for this model (they ran out of memory before terminating). Nevertheless, we will briefly describe the two
methods.

Our attempt to maximize the likelihood implicitly used algorithm 2.2.9 from [3]. Unfortunately, Singular
was unable to compute the kernel of the the Jacobian J(P ) modulo P (where P is the ideal of the model)
even in smaller, degenerate cases.

A näıve explicit approach would undoubtably fare even worse. We can write out the Lagrangian of ` and
take its partial derivates. These are of the form

∂

∂θj
L(θ, λ) =

11∑
i=1

ui

∂
∂θj

gi(θ)

gi(θ)
+ λ

11∑
i=1

∂

∂θj
gi(θ).

Maximizing the Lagrangian involves taking the polynomial ideal generated by
∏

i gi(θ) ∂
∂θj

L(θ, λ) for j =
1, . . . , 5 and saturating it by

∏
i gi(θ), which is a degree 33 polynomial with 2375 terms in 5 unknowns.

Instead, we could try to take advantage of the fact that our model is the linear image of a toric ideal in
R10. That is, define V to be the toric variety parametrized by

(θ1, . . . , θ5) 7→ (θ1θ2θ3, θ1θ2θ4, . . . , θ3θ4θ5)
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and attempt to maximize

`(θ) =
11∑

i=1

ui log(M̃x)i

subject to the constraints x ∈ V and
∑

i(M̃x)i = 1. The first step is to find an ideal generating V so that
we can write down the constraints on x. It turns out that V is cut out by the quadratic binomial ideal

I = 〈b3b2 − a1a4, b1b2 − b4a4, a5b5 − a1a4, b1b5 − a2a4, b4b5 − a2b2,

a5a3 − b4a4, b3a3 − a2a4, a1a3 − b4b5, b4b3 − a2a5, a1b1 − b4b3〉

where we have used the notation x = (a1, . . . , a5, b1, . . . , b5) to emphasize the fact that the first 5 coordinates
correspond to the cones A1 through A5 and the last 5 coordinates correspond to the cones B1 through B5.

Then the ML estimate can be written as the solution of a constrained optimization problem in 21
variables (a1, . . . , b5, 10 Lagrange multipliers for the 10 binomial constraints in V and 1 Lagrange multiplier
for the constraint that the probabilities sum to 1). Although there has been an increase in the number of
parameters, there has been a substantial decrease in the degree of the polynomials involved. Indeed, each
partial derivative of the Lagrangian has the form

∂L

∂ai
=

ui

ai + ai+1 + bi+3
+

ui−1

ai−1 + ai + bi+2
+

ui⊕5

ai + bi + bi+2 + bi+3
+ constraints (9)

or

∂L

∂bi
=

ui+2

bi + ai+2 + ai+3
+

ui⊕5

ai + bi + bi+2 + bi+3
+

ui⊕7

ai+2 + bi + bi+2 + bi−1

+
ui⊕8

ai+3 + bi + bi+1 + bi+3
+

u11

b1 + b2 + b3 + b4 + b5
+ constraints (10)

where i ± x is taken modulo 5 and i ⊕ x is defined to be 5 + (i + x mod 5). The constraints in all cases
are sums of quadratic terms where exactly one unknown in each term is a Lagrange multiplier. If we clear
denominators, we end up with a system of polynomial equations of which 5 have degree 5, 5 have degree 7,
10 have degree 2 and one has degree 1. Using the linear relations described in Figure 2, we can eliminate 4
of the equations of degree 7, but the resulting system is still intractable.

3 Future work

Given that classical algebraic methods are unable to maximize the likelihood on this model, other methods
need to be tried. Craciun et al. proposed a coordinate ascent algorithm for maximizing the likelihood (since
the parameterization is multi-linear, it is easy to maximize the likelihood on one coordinate of the parameter).
They didn’t use this method in their numerical simulations however, because it proved to be too slow (they
used a generic hill-climbing algorithm with random restarts). One might hope to improve the situation by
using the nice structure of the model (ie. the fact that it is a low-rank linear transformation of a toric variety)
to make an initial guess for the starting point of a hill-climbing algorithm. Even better would be a proof that
the maximum likelihood estimator lies in a particular region (ie. some sort of “Varchenko’s formula”-type
result). Then a hill-climbing algorithm could be restricted to that region. For example, if we were using
random restarts to avoid getting stuck in local maxima, we could direct the restarts to the regions where
the maximizer is allowed to be.
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