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We consider a model XR that is given as the zero set in Rn of a collection {f1, . . . , fk}
of nonlinear polynomials in n unknowns x1, . . . , xn. Thus, XR is a real algebraic variety.
In order to apply algebraic methods, we prefer to work with the complex algebraic variety
X ⊂ Cn defined by the same polynomials. Thus XR is the subset of real points in X.

We assume that X is irreducible, that IX = ⟨f1, . . . , fk⟩ is its prime ideal, and that the set
of nonsingular real points is Zariski dense in X. The k × n Jacobian matrix J = (∂fi/∂xj)
has rank at most c at any point x ∈ X, where c = codim(X). The point x is nonsingular on
X if the rank is exactly c. The variety X is called smooth if all its points are nonsingular.
Elaborations on these hypotheses are found in many text books, including [8, Chapter 2].

The following optimization problem arises in many applications. Given a data point
u ∈ Rn\X, compute the distance to the model X. Thus, we seek a point x∗ in X that is
closest to u. The answer depends on the chosen metric. We focus on the case when the
metric is represented by a polynomial and x∗ is a smooth point on X. The optimal point
x∗ is a solution to the critical equations. In optimization, these are also known as first-order
conditions or KKT equations, and they arise from introducing Lagrange multipliers. We seek
to compute all complex solutions to the critical equations. The set of these critical points is
typically finite, and it includes all local maxima, all local minima and all saddle points.

We begin by discussing the Euclidean distance (ED) problem, which is as follows:

minimize
n∑

i=1

(xi − ui)
2 subject to x ∈ X. (1)

Our first step is to derive the critical equations for (1). The augmented Jacobian matrix AJ
is the (k+1)×n matrix obtained by placing the row (x1−u1, . . . , xn−un) atop the Jacobian
matrix J . We form the ideal generated by its (c + 1) × (c + 1) minors, we add the ideal
of the model IX , and we then saturate that sum by the ideal of c × c minors of J . See [4,
Eqn. (2.1)]. The result is the critical ideal CX,u of the model X with respect to the data u.

Example 1 (Plane curves). Let X be the plane curve defined by a polynomial f(x1, x2).
We wish to compute the Euclidean distance from X to a given point u = (u1, u2) ∈ R2. To
this end, we form the augmented Jabobian matrix. This matrix is square of size 2× 2:

AJ =

(
x1 − u1 x2 − u2

∂f/∂x1 ∂f/∂x2

)
(2)
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The critical ideal is obtained from f and the determinant of AJ as follows:

CX,u = ⟨ f, det(AJ ) ⟩ : ⟨ ∂f/∂x1, ∂f/∂x2 ⟩∞. (3)

This ideal lives in R[x1, x2]. Frequently, the coefficients of f and the coordinates of u are
rational numbers, and in this case we can perform the computation purely symbolically in
Q[x1, x2]. The saturation step in (3) removes points that are singular on the curve X = V(f).
If X is smooth then saturation is unnecessary, and we simply have CX,u = ⟨ f, det(AJ ) ⟩.

In applications, we must expect singularities. For a concrete example take the cardioid

f = (x2
1 + x2

2 + x2)
2 − (x2

1 + x2
2), (4)

and fix a random point u = (u1, u2). See [4, Example 1.1]. The ideal ⟨ f, det(AJ ) ⟩ is the
intersection of CX,u and an ⟨x1, x2⟩-primary ideal of multiplicity 3. The critical ideal CX,u

has three distinct complex zeros. We can express their coordinates in radicals in u1, u2. ⋄

The variety V(CX,u) is the set of complex critical points of (1). For random data u, this
variety is a finite subset of Cn, and it contains the optimal solution x∗, provided the latter
is attained at a smooth point of X. It was proved in [4] that the number of critical points,
i.e. the cardinality of the variety V(CX,u), is independent of u, if we assume that the data
point u is sufficiently general. This number is called the ED degree of the variety X. In
Example 1 we examined a plane curve of degree 4 whose ED degree equals 3. The ED degree
of a variety X measures the difficulty of solving the ED problem (1) using exact algebraic
methods. The ED degree is an important complexity measure in metric algebraic geometry.

Example 2 (Space curves). Fix n = 3 and let X be the curve in R3 defined by two general
polynomials f1 and f2 of degrees d1 and d2 in x1, x2, x3. The augmented Jacobian matrix is

AJ =

 x1 − u1 x2 − u2 x3 − u3

∂f1/∂x1 ∂f1/∂x2 ∂f1/∂x3

∂f2/∂x1 ∂f2/∂x2 ∂f2/∂x3

 . (5)

Fix a general data vector u ∈ R3. Then the critical ideal equals CX,u =
〈
f1, f2, det(AJ )

〉
.

Hence the set of critical points is the intersection of three surfaces, of degrees d1, d2 and
d1 + d2 − 1. By Bézout’s Theorem [8, Theorem 2.16], the expected number of solutions is
the product of these degrees. Hence the ED degree of the curve X equals d1d2(d1 + d2 − 1).

The same formula can be derived from a formula for general curves in terms of algebraic
geometry data. Let X be a general smooth curve of degree d and genus g in any ambient
space Rn. By [4, Corollary 5.9], we have EDdegree(X) = 3d + 2g − 2. The above curve in
3-space has degree d = d1d2 and genus g = d21d2/2 + d1d

2
2/2− 2d1d2 + 1. We conclude that

EDdegree(X) = 3d+ 2g − 2 = d1d2(d1 + d2 − 1).

This formula also covers the case of plane curves (cf. Example 1). Namely, if we set d1 = d
and d2 = 1 then we see that a general plane curve X of degree d has EDdegree(X) = d2. In
particular, a general plane quartic has ED degree 16. However, that number can drop a lot
for curves that are special. For the cardiod in (4) the ED degree drops from 16 to 3. ⋄
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Here is a general upper bound on the ED degree in terms of the given polynomials.

Proposition 3. Let X be a variety of codimension c in Rn whose ideal IX is generated by
polynomials f1, f2, . . . , fc, . . . , fk of degrees d1 ≥ d2 ≥ · · · ≥ dc ≥ · · · ≥ dk. Then

EDdegree(X) ≤ d1d2 · · · dc ·
∑

i1+i2+···+ic≤n−c

(d1 − 1)i1(d2 − 1)i2 · · · (dc − 1)ic . (6)

Equality holds when X is a generic complete intersection of codimension c (hence c = k).

Proof. This appears in [4, Proposition 2.6]. We can derive it as follows. Bézout’s Theorem
ensures that the degree of the variety X is at most d1d2 · · · dc. The entries in the ith
row of the matrix AJ are polynomials of degrees di − 1. The degree of the variety of
(c+ 1)× (c+ 1) minors of AJ is at most the sum in (6). This follows from the Giambelli–
Thom–Porteous formula, which expresses the degree of a determinantal variety in terms of
symmetric functions. The intersection of that determinantal variety with X is our set of
critical points, and the cardinality of that set is bounded by the product of the two degrees.
Generically, that intersection is a complete intersection and the inequality (6) is attained.

Formulas or a priori bounds for the ED degree are important when studying exact so-
lutions to the optimization problem (1). The paradigm is to compute all complex critical
points, by either symbolic or numerical methods, and to then extract one’s favorite real
solutions among these. This leads, for instance, to all local minima in (1). The ED degree is
an upper bound on the number of real critical points, but this bound is generally not tight.

Figure 1: ED problems on the Trott curve: configurations of eight (left) or ten (right) critical
points. Data points are blue, local minimal are green, and local maxima are purple. The
coordinates of the critical points are computed by solving the critical equations in (7).

Example 4. Consider the case n = 2, c = 1, d1 = 4 in Proposition 3, where X is a generic
quartic curve in the plane R2. The number of complex critical points is EDdegree(X) = 16.
But, they cannot be all real. For an illustration, consider the Trott curve X = V (f), given by

f = 144(x4
1 + x4

2) − 225(x2
1 + x2

2) + 350x2
1x

2
2 + 81.
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This curve is shown in Figure 1. For general data u = (u1, u2) in R2, the critical equations

f =
∂f

∂x2

(x1 − u1)−
∂f

∂x1

(x2 − u2) = 0. (7)

have distinct 16 complex solutions, and these are all critical points in X. Since the Trott
curve is smooth, the saturation step in (3) is not needed when computing the ideal CX,u.

The ED degree 16 is an upper bound for the number of real critical points of the op-
timization problem (1) for any data point u. The actual number depends heavily on the
specific location of u. For u near the origin, eight of the 16 points in V(CX,u) are real. For
u =

(
7
8
, 1
100

)
, which is inside the rightmost oval, there are 10 real critical points. The two

scenarios are shown in Figure 1. Local minima are green, while local maxima are purple.
For u = (2, 1

100
), to the right of the rightmost oval, the number of real critical points is 12. ⋄

In general, our task is to compute the complex zeros of the critical ideal CX,u. Algorithms
for this computation can be either symbolic or numerical. Symbolic methods usually rest
on the construction of a Gröbner basis, to be followed by a floating point computation to
extract the solutions. In recent years, numerical methods have become increasingly popular.
These are based on homotopy continuation. Two notable packages are Bertini [1] and
HomotopyContinuation.jl [3]. The ED degree is important here because it indicates how
many paths need to be tracked to solve (1). We next illustrate current capabilities.

Example 5. Suppose X is defined by c = k = 3 random polynomials in n = 7 variables, for
a range of degrees d1, d2, d3. The table below lists the ED degree in each case, and the times
used by HomotopyContinuation.jl to compute and certify all critical points in C7.

d1 d2 d3 3 2 2 3 3 2 3 3 3 4 2 2 4 3 2 4 3 3 4 4 2 4 4 3
EDdegree 1188 3618 9477 4176 10152 23220 23392 49872

Solving (sec) 3.849 21.06 61.51 31.51 103.5 280.0 351.5 859.3
Certifying (sec) 0.390 1.549 4.653 2.762 7.591 17.16 21.65 50.07

Here we represent CX,u by a system of 10 equations in 10 variables. In addition to the three
equations f1 = f2 = f3 = 0 in x1, . . . , x7, we take the seven equations (1, y1, y2, y3) · AJ = 0.
Here y1, y2, y3 are new variables. These ensure that the 4 × 7 matrix AJ has rank ≤ 3.
This formulation avoids the listing of all

(
7
4

)
= 35 maximal minors. It is the preferred

representation of determinantal varieties in the setting of numerical algebraic geometry.
The timings above refer to computing all complex solutions to the system of 10 equations

in 10 variables. They include the certification step [2] that proves correctness and complete-
ness. These computations were performed using HomotopyContinuation.jl v2.5.6 on a 16
GB MacBook Pro with an Intel Core i7 processor working at 2.6 GHz. They suggest that
our critical equations can be solved fast and reliably, with proof of correctness, when the ED
degree is less than 50000. When the ED degree exceeds 50000, success with numerical path
tracking will depend on the specific structure of the family. A key player on the geometric
side is the discriminant of the problem. If that is well-behaved, then even larger ED degrees
are feasible. A successful application to a physics problem is reported in [11, Table 1]. ⋄
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When the ED problem (1) arises in an application then the variety X often describes
matrices of low rank that are constrained to have a special structure. Sometimes these
matrices are flattenings of tensors. This version of the problem was studied in the article [9],
which focuses on Hankel matrices, Sylvester matrices and generic subspaces of matrices, and
which uses a weighted version of the Euclidean metric. We now offer a brief introduction.

Our point of departure is the following general low-rank approximation problem:

minimize ||X − U ||2Λ =
m∑
i=1

n∑
j=1

λij(xij − uij)
2 subject to rank(X) ≤ r. (8)

Here, we are given a real data matrix U = (uij) of format m × n, and we wish to find a
matrix X = (xij) of rank at most r that is closest to U in a weighted Frobenius norm. The
entries of the weight matrix Λ = (λij) are positive reals. If m ≤ n and the weight matrix Λ
is the all-one matrix 1 then the solution to (8) is given by the singular value decomposition

U = T1 · diag(σ1, σ2, . . . , σm) · T2.

Here T1, T2 are orthogonal matrices, and σ1 ≥ σ2 ≥ · · · ≥ σm are the singular values of U .
The following well-known theorem concerns the variety X of m× n matrices of rank ≤ r.

Theorem 6 (Eckart-Young). The closest matrix of rank ≤ r to the given matrix U equals

U∗ = T1 · diag(σ1, . . . , σr, 0, . . . , 0) · T2. (9)

This is the unique local minimum. All complex critical points are real. They are found by
substituting zeros for m− r of the entries of diag(σ1, . . . , σm). Hence, EDdegree(X) =

(
m
r

)
.

For general weights Λ, the situation is more complicated. In particular, there can be
complex critical points and multiple local minima. We discuss a small instance in Example 8.

First, let us define the problem of structured low-rank approximation. Here we are given
a linear subspace L ⊂ Rm×n, often with U ∈ L, and we wish to solve the restricted problem:

minimize ||X − U ||2 =
m∑
i=1

n∑
j=1

λij(xij − uij)
2 subject to X ∈ L and rank(X) ≤ r. (10)

A best-case scenario for Λ = 1 would be this: if U lies in L then so does the SVD solution
U∗ in (9). This happens for some subspaces L, including symmetric and circulant matrices.
However, most subspaces L do not enjoy this property, and finding the optimal solution of
(10) is difficult even for Λ = 1. The article [9] studies this optimization problem for both
generic and special subspaces L. It rests on [4] and uses tools from algebraic geometry.

As before, our primary task is to compute the number of complex critical points of (10).
Thus, we seek to find the Euclidean distance degree (ED degree) of the determinantal variety

L≤r :=
{
X ∈ L : rank(X) ≤ r

}
.

This variety is always regarded as a subvariety of the matrix space Rm×n, and we use the
Λ-weighted Euclidean distance coming from Rm×n. We write EDdegreeΛ(L≤r) for the Λ-
weighted Euclidean distance degree of the variety L≤r. Thus EDdegreeΛ(L≤r) is the number
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of complex critical points of the problem (10) for generic data matrices U . The importance
of keeping track of the weights Λ was highlighted in [4, Example 3.2], for the seemingly
harmless situation when L is the subspace of all symmetric matrices in Rn×n.

Of special interest are the unit ED degree, when Λ = 1 is the all-one matrix, and the
generic ED degree, denoted EDdegreegen(L≤r), when the weight matrix Λ is generic. The
generic ED degree is given by a formula that rests on intersection theory. See [4, Theorem
7.7] and Theorem 9 below. Indeed, choosing the positive weights λij to be generic ensures
that the projective closure of L≤r has transversal intersection with the isotropic quadric

{
X ∈ Pmn−1 :

m∑
i=1

n∑
j=1

λijx
2
ij = 0

}
.

We next present two examples that illustrate the concepts above. These can then also
serve as examples for Theorem 9, as seen by the Macaulay2 calculation in Example 15.

Example 7. Let m = n = 3 and L ⊂ R3×3 the 5-dimensional space of Hankel matrices:

X =

x0 x1 x2

x1 x2 x3

x2 x3 x4

 , U =

u0 u1 u2

u1 u2 u3

u2 u3 u4

 and Λ =

λ0 λ1 λ2

λ1 λ2 λ3

λ2 λ3 λ4

 .

Our goal in (10) is to solve the following constrained optimization problem for r = 1, 2:

minimize λ0(x0 − u0)
2 + 2λ1(x1 − u1)

2 + 3λ2(x2 − u2)
2 + 2λ3(x3 − u3)

2 + λ4(x4 − u4)
2

subject to rank(X) ≤ r.

This can be rephrased as an unconstrained optimization problem. For instance, for rank
r = 1, we get a one-to-one parametrization of L≤1 by setting xi = sti, and our problem is to

minimize λ0(t− u0)
2 + 2λ1(st− u1)

2 + 3λ2(st
2 − u2)

2 + 2λ3(st
3 − u3)

2 + λ4(st
4 − u4)

2.

The ED degree is the number of critical points with t ̸= 0. We consider three weight matrices:

1 =

1 1 1
1 1 1
1 1 1

 , Ω =

 1 1/2 1/3
1/2 1/3 1/2
1/3 1/2 1

 , Θ =

1 2 2
2 2 2
2 2 1

 .

Here Ω gives the usual Euclidean metric when L is identified with R5, and Θ arises from
identifying L with the space of symmetric 2×2×2×2-tensors, as in Section 4. We compute

EDdegree1(L≤1) = 6, EDdegreeΩ(L≤1) = 10, EDdegreeΘ(L≤1) = 4,
EDdegree1(L≤2) = 9, EDdegreeΩ(L≤2) = 13, EDdegreeΘ(L≤2) = 7.

In both cases, Ω exhibits the generic behavior, so EDdegreegen(L≤r) = EDdegreeΩ(L≤r). We
refer to [9, Sections 3 and 4] for larger Hankel matrices and formulas for their ED degrees. ⋄
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Example 8. Let m = n = 3, r = 1 but now take L = R3×3, so this is just the weighted
rank-one approximation problem for 3 × 3-matrices. We know from [4, Example 7.10] that
EDdegreegen(L≤1) = 39. We take a circulant data matrix and a circulant weight matrix:

U =

−59 11 59
11 59 −59
59 −59 11

 and Λ =

9 6 1
6 1 9
1 9 6

 .

This instance has 39 complex critical points. Of these, 19 are real, and 7 are local minima: 0.0826 2.7921 −1.5452
2.7921 94.3235 −52.2007

−1.5452 −52.2007 28.8890

,
−52.2007 28.8890 −1.5452

2.7921 −1.5452 0.0826
94.3235 −52.2007 2.7921

,
−52.2007 2.7921 94.3235

28.8890 −1.5452 −52.2007
−1.5452 0.0826 2.7921

,
−29.8794 36.2165 −27.2599
−32.7508 39.6968 −29.8794

39.6968 −48.1160 36.2165

,
−48.1160 36.2165 39.6968

36.2165 −27.2599 −29.8794
39.6968 −29.8794 −32.7508

,
−29.8794 −32.7508 39.6968

36.2165 39.6968 −48.1160
−27.2599 −29.8794 36.2165

,
−25.375 −25.375 −25.375
−25.375 −25.375 −25.375
−25.375 −25.375 −25.375

 .

The first three are the global minima. The last matrix is the local minimum where the
objective function has the largest value: note that each entry equals −203/8. The entries of
the first six matrices are algebraic numbers of degree 10 over Q. For instance, the two upper
left entries 0.0826 and −48.1160 are among the four real roots of the irreducible polynomial

164466028468224x10 + 27858648335954688x9 + 1602205386689376672x8 + 7285836260028875412x7

−2198728936046680414272x6 − 14854532690380098143152x5 + 2688673091228371095762316x4

+44612094455115888622678587x3 − 41350080445712457319337106x2

+27039129499043116889674775x− 1977632463563766878765625.

Thus, the critical ideal inQ[x11, x12, . . . , x33] is not prime. It is the intersection of six maximal
ideals. Their degrees over Q are 1, 2, 6, 10, 10, 10, for a total of 39 = EDdegreegen(L≤1). ⋄

Explicit formulas are derived in [9, Section 3] for EDdegreegen(L≤r) when L is a generic
subspace of Rm×n. This covers the four cases that arise by pairing affine subspaces or
linear subspaces with either unit weights or generic weights. One important feature of
determinantal varieties is they are not complete intersections. This implies that their ED
degrees are much smaller than suggested by the upper bound in Proposition 3. In order to
deal with such situations, we need the following algebro-geometric formula for ED degrees.

Theorem 9. If X meets both the hyperplane at infinity and the isotropic quadric transver-
sally, then EDdegree(X) equals the sum of the polar degrees of the projective closure of X.

We shall explain all the terms used in this theorem. First of all, the projective closure
of our affine variety X ⊂ Cn is its Zariski closure in complex projective space Pn, which
we also denote by X. Algebraically, Pn is obtained from Cn by adding one homogenizing
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coordinate x0. We identify the affine space Cn with the open subset {x ∈ Pn : x0 ̸= 0}.
Its set complement {x ∈ Pn : x0 = 0} ≃ Pn−1 is the hyperplane at infinity inside Pn.
The hypersurface {x ∈ Pn−1 :

∑n
i=1 x

2
i = 0} is called the isotropic quadric. It lives in the

hyperplane at infinity and it has no real points. The hypothesis in Theorem 9 means that
the intersection of X with these two loci is reduced and has the expected dimension.

Theorem 9 appears in [4, Proposition 6.10]. The hypothesis is stated precisely in precise
terms in [4, equation (6.4)]. It holds for all X after a general linear change of coordinates.

For the projective variety X, one considers the ED problem for its affine cone in Rn+1.
The data vector now equals u = (u0, u1, . . . , un), and the augmented Jacobian is redefined
so as to respect the fact that all polynomials are homogeneous. The general formula for this
matrix and the homogeneous critical ideal appears in [4, equation (2.7)].

For a curve X ⊂ P2 with defining polynomial f(x0, x1, x2), the augmented Jacobian is

AJ =

 u0 u1 u2

x0 x1 x2

∂f/∂x0 ∂f/∂x1 ∂f/∂x2

 ,

and the homogeneous critical ideal in R[x0, x1, x2] is computed as follows:

CX,u =
〈
f, det(AJ )

〉
:
(
⟨∂f/∂x0, ∂f/∂x1, ∂f/∂x2⟩ · (x2

1 + x2
2)
)∞

. (11)

The critical points are given by the variety V(CX,u) in P2, whose cardinality is EDdegree(X).
The factor (x2

1+x2
2) in the saturation step (11) is the isotropic quadric. It is needed whenever

the hypothesis of Theorem 9 is not satisfied. Namely, it removes any extraneous component
that may arise from non-transversal intersection of the curve X with the isotropic quadric.

Example 10 (Cardioid). We consider the homogeneous version of the cardioid in Example 1:

f = (x2
1 + x2

2 + x0x2)
2 − x2

0(x
2
1 + x2

2). (12)

The projective curve X = V(f) has three singular points, namely that at the origin V(x1, x2)
in C2 = {x0 ̸= 0} and the two points in the isotropic quadric V(x2

1 + x2
2) in P1 = {x0 = 0}.

The homogenous critical ideal CX,u is generated by three cubics, and it defines seven
points in P2. Hence the projective cardioid X has EDdegree(X) = 7. This is also the ED
degree of the affine cardioid in (4) but only after a linear change of coordinates. That change
can be fairly modest: if we replace x1 by 2x1 in (4) then the ED degree jumps from 3 to 7. ⋄

We now explain what the polar degrees of a variety X ⊂ Pn are. Points h in the dual
projective space (Pn)∨ represent hyperplanes {x ∈ Pn : h0x0 + · · · + hnxn = 0}. We are
interested in all pairs (x, h) in Pn × (Pn)∨ such that x is a nonsingular point of X and h is
tangent to X at x. The Zariski closure of this set is the conormal variety NX ⊂ Pn × (Pn)∨.

It is known that NX has dimension n − 1, and if X is irreducible then so is NX . The
image of NX under projection onto the second factor is the dual variety X∨. The role of
x ∈ Pn and h ∈ (Pn)∨ can be swapped. The following biduality relations [5, §I.1.3] hold:

NX = NX∨ and (X∨)∨ = X.

The conormal variety is an object of algebraic geometry that offers the theoretical foundations
for various aspects of duality in optimization, including primal-dual algorithms.
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Example 11. For a plane curve X = V(f) in P2, the conormal variety NX is a curve in
P2 × (P2)∨. Its ideal is derived from the ideal that is generated by f and the 2× 2 minors of(

h0 h1 h2

∂f/∂x0 ∂f/∂x1 ∂f/∂x2

)
By saturation, we remove singularities and points on the isotropic quadric, to arrive at CX,u.

For instance, if f is the homogeneous cardioid in (12) then X∨ is the cubic defined by

16h3
0 − 27h0h

2
1 − 24h2

0h2 − 15h0h
2
2 − 2h3

2.

The ideal of NX has ten minimal generators. In addition to the above generators of bidegrees
(4, 0) and (0, 3), we find the quadric x0h0 + x1h1 + x2h2 of bidegree (1, 1), three cubics of
bidegree (2, 1) like x2

1h1 − 3x2
2h1 − x0x1h2 + 4x1x2h2, and four cubics of bidegree (1, 2). ⋄

We now finally come to the polar degrees. To this end, we consider the cohomology ring
of the product of two projective spaces which serves as our primal-dual ambient space:

H∗(Pn×(Pn)∨, Z) = Z[s, t]/⟨sn+1, tn+1⟩.

The class of the conormal variety NX in this cohomology ring is a binary form of degree
n+ 1 = codim(NX) whose coefficients are nonnegative integers:

[NX ] = δ1(X)snt + δ2(X)sn−1t2 + δ3(X)sn−2t3 + · · · + δn(X)stn.

The coefficients δi(X) of this binary form are the polar degrees of X.

Remark 12. The polar degrees satisfy δi(X) = #(NX ∩ (L × L′)), where L ⊂ Pn and
L′ ⊂ (Pn)∨ are general linear subspaces of dimensions n + 1 − i and i respectively. This
geometric interpretation implies that δi(X) = 0 for i < codim(X∨) and for i > dim(X) + 1.
Moreover, the first and last polar degree are the classical degrees for the dual pair of varieties:

δi(X) = degree(X) for i = dim(X) + 1 and δi(X) = degree(X∨) for i = codim(X∨). (13)

Example 13. Let X ⊂ P2 be the cardioid in (12). The curve NX ⊂ P2× (P2)∨ has the class

[NX ] = degree(X∨) · s2t + degree(X) · st2 = 3 · s2t + 4 · st2.

Thus the polar degrees of the cardiod are 3 and 4. Their sum 7 is the ED degree. ⋄

Example 14. Let X be a general surface of degree d in P3. Its dual X∨ is a surface of
degree d(d− 1)2 in (P3)∨. The conormal variety NX is a surface in P3 × (P3)∨, with class

[NX ] = d(d− 1)2 s3t + d(d− 1) s2t2 + d st3.

The sum of the three polar degrees equals EDdegree(X) = d3 − d2 + d; see Proposition 3. ⋄

Theorem 9 allows us to compute the ED degree for many interesting varieties, e.g. using
Chern classes [4, Theorem 5.8]. This is relevant for applications in machine learning [6]
which rest on low-rank approximation of matrices and tensors with special structure [9].

9



Example 15 (Determinantal varieties). Let Xr ⊂ Pm2−1 be the variety of m×m matrices
x = (xij) of rank ≤ r. By [10], the conormal variety NX is cut out by nice matrix equations:

NX =
{
(x, h) ∈ Pm2−1 × Pm2−1 : rank(x) ≤ r, rank(h) ≤ m− r, x · h = 0 and h · x = 0

}
.

In particular, the duality relation (Xr)
∨ = Xm−r holds among determinantal varieties. Typ-

ing the above formula into Macaulay2, we compute the polar degrees for r = 1 and m = 3:

QQ[x11,x12,x13,x21,x22,x23,x31,x32,x33,h11,h12,h13,h21,h22,h23,h31,h32,h33,

Degrees=> {{1,0},{1,0},{1,0},{1,0},{1,0},{1,0},{1,0},{1,0},{1,0},

{0,1},{0,1},{0,1},{0,1},{0,1},{0,1},{0,1},{0,1},{0,1}}];

x = matrix {{x11,x12,x13},{x21,x22,x23},{x31,x32,x33}};

h = matrix {{h11,h12,h13},{h21,h22,h23},{h31,h32,h33}};

I = minors(2,x) + minors(3,h) + minors(1,x*h) + minors(1,h*x);

isPrime(I), codim(I), degree I

multidegree(I)

The code starts with the bigraded coordinate ring of P8 × P8. It verifies that NX has
codimension 9 and that I is its prime ideal. The last command computes the polar degrees:

[NX ] = 3s8t + 6s7t2 + 12s6t3 + 12s5t4 + 6s4t5. (14)

After verifying (13), one concludes that EDdegree(X1) = 3 + 6 + 12 + 12 + 6 = 29. Indeed,
after changing coordinates, the EDdegree for 3 × 3-matrices of rank 1 equals 39. We saw
this already in Example 8, where 39 critical points were found by a numerical computation.

The primal-dual set-up of the conormal varieties allows for a very elegant formulation of
the critical equations. We now assume that X is an irreducible variety defined by homoge-
neous polynomials in n variables. Thus X is an affine cone in Cn. Its dual Y = X∨ is the
affine cone over the dual of the projective variety given by X. Thus Y is also an affine cone
in Cn. In this setting, the conormal variety NX is viewed as an affine variety of dimension
n in C2n. The homogeneous ideals of these cones are precisely those discussed above.

Theorem 16. The ED problems for X and Y coincide, and we have EDdegree(X) =
EDdegree(Y ). Given a general data point u ∈ Rn, the critical equations for this problem are:

(x, h) ∈ NX and x+ h = u. (15)

Proof. See [4, Theorem 5.2].

It is instructive to verify Theorem 16 for Example 15. For any data matrix u of sizem×m,
the sum in (15) is a special decomposition of u, namely x of rank r plus h of rank m− r. It
arises from zeroing out complementary singular values σi in the Eckhart-Young Theorem.

In general, there is no free lunch. The difficulty lies in computing the ideal of the conormal
variety NX . However, this should be thought of as a preprocessing step, to be carried out
only once per model X. If an efficient presentation of NX is available, our task is is to solve
the system x+h = u of n linear equations in 2n coordinates for the n-dimensional space NX .
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The discussion so far was restricted to the Euclidean norm. But, we can measure distances
in Rn with any other norm || · ||. Our optimization problem (1) extends naturally:

minimize ||x− u|| subject to x ∈ X. (16)

The unit ball B = {x ∈ Rn : ||x|| ≤ 1} is a convex body. Conversely, every centrally
symmetric convex body B defines a norm, and we can paraphrase (16) as follows:

minimize λ subject to λ ≥ 0 and (u+ λB) ∩ X ̸= ∅. (17)

If the boundary of B is smooth and algebraic then we express the critical equations as
a polynomial system. This is derived as before, but we now replace the first row of the
augmented Jacobian matrix AJ with the gradient of the map Rn → R, x 7→ ||x− u||.
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