This exam is closed book. You may not use any books, notes or electronic devices. Please write your answers in a blue note book. Write your name, the name of your TA and your section time on the cover. There are five problems, each worth 20 points, for a total of 100 points. Answers without justification will not receive credit. You may look at your graded exam in your discussion section on Monday, March 2.
(1) The value of the Euler ϕ-function at a positive integer n is the number of positive integers less than or equal to n that are relatively prime to n. Compute the following four values of this function: $\phi(36), \phi(37), \phi(81)$ and $\phi(1024)$.
(2) Determine the truth value of each of these statement if the domain of each variable is the set of nonnegative integers:
(a) $\exists x\left(\left(x^{2}<10\right) \wedge(|3-x|>2)\right)$
(b) $\forall x((x \neq 4) \rightarrow(x-5>1))$
(c) $\forall x \exists y(x+y=0)$
(d) $\exists x \forall y(x y=0)$
(3) Prove that 5 divides $n^{5}-n$ whenever n is a positive integer.
(4) Find an inverse of 81 modulo 250.
(5) The symmetric difference $A \oplus B$ of two sets A and B is the set containing those elements in either A or B but not in both A and B. Determine whether this operation associative; that is, if A, B and C are sets, does it follow that $A \oplus(B \oplus C)=(A \oplus B) \oplus C$?

