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Abstract

We study the asymptotics of marginal likelihood integrals for dis-
crete models using resolution of singularities from algebraic geometry,
a method introduced recently by Sumio Watanabe. We briefly de-
scribe the statistical and mathematical foundations of this method,
and explore how Newton diagrams and toric modifications help solve
the problem. The approximations are then compared with exact com-
putations of the integrals.

1 Introduction

Evaluation of marginal likelihood integrals is central to Bayesian statistics.
Unfortunately, these integrals are generally difficult to compute. They are
often estimated using general techniques such as Markov Chain Monte Carlo
(MCMC) methods. For certain specific models, approximation formulas are
also available. In this project, we hope to find approximation formulas for
a large class of discrete statistical models, namely mixtures of independence
models. It extends the work in [4] where efficient exact algorithms for evalu-
ating integrals with small sample sizes in this class of models were proposed.
We refer the reader to [4] for definitions of independence models and their
mixtures. In the algebraic geometric context, these mixtures are secant va-
rieties of Segre-Veronese varieties.

We now describe the problem at hand. Let M be a statistical model on
a finite discrete space [k] = {1, 2, . . . , k} parametrized by a real polynomial
map p : Ω → ∆k−1 where Ω is a compact subset of Rd. Let q ∈ ∆k−1 be a
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point in the model with non-zero entries. Consider a sample of size n drawn
from the distribution q, and let u = (ui) be the vector of counts for this
sample. We want to estimate the marginal likelihood integral

Zn(u) =

∫
Ω

k∏
i=1

pi(ω)uidω.

2 Statistical Background

For ω ∈ Ω, define the Kullback-Leibler information

K(ω) =
k∑

i=1

qi log
qi

pi(ω)

and the log likelihood ratio function

Kn(ω) =
k∑

i=1

ui

n
log

qi

pi(ω)

where u = (ui) is the summary for n identically distributed random variables
under the model. Note that Kn(ω) is a random variable that depends on the
data u, while K(ω) = E[Kn(ω)] is deterministic. One integral of interest is
the normalized stochastic complexity

Fn = − log

∫
Ω

e−nKn(ω)dω = log(
k∏

i=1

qui
i )− log Zn (1)

where Zn = Zn(u) is the marginal likelihood integral. Fn and Zn are random
variables because of their dependence on the random data u. Now, consider
a deterministic version of stochastic complexity

f(n) = − log

∫
Ω

e−nK(ω)dω. (2)

Here the random variable Kn(ω) in (1) is replaced by the deterministic K(ω).
In general, it is not true that f(n) = E[Fn], but Watanabe showed that they
have similar asymptotic properties [5].
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Theorem 2.1. The normalized stochastic complexity satisfies

Fn = λ log n− (m− 1) log log n + Op(1),

where Op(1) is bounded in probability and λ, m come from the asymptotics

f(n) = λ log n− (m− 1) log log n + O(1).

Furthermore, if J(z) is the zeta function

J(z) =

∫
Ω

K(w)zdω,

then (−λ) is the largest pole of J(z) and m its multiplicity.

From (1) and Theorem 2.1, we conclude that

E[log Zn] = n

k∑
i=1

qi log qi − λ log n + (m− 1) log log n + O(1). (3)

Therefore, to estimate marginal likelihood integrals, it is extremely useful to
study the zeta function J(z) of the model.

3 Relation to Algebraic Geometry

We begin with the following notations.

Definition 3.1. For a compact set Ω ⊂ Rd with standard Lebesgue measure,
a function K : Ω → R≥0 and δ > 0, define

ΩK≤δ = {ω ∈ Ω : K(ω) ≤ δ},
ΩK>δ = {ω ∈ Ω : K(ω) > δ}.

Also, define the complexity of K over Ω to be

f(n, Ω, K) = − log

∫
Ω

e−nK(ω)dω

and the zeta function of K to be the analytic continuation of

J(z) =

∫
Ω

K(w)zdω, z ∈ C

to the entire complex plane.
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Definition 3.2. Given functions f1, f2 : N → R, we say that f2 is asymp-
totically larger than f1 if f2(n) − f1(n) is positive and unbounded for large
n. We write f2 > f1. In this case, if the functions are of the form

f1(n) = λ1 log n− (m1 − 1) log log n + O(1),

f2(n) = λ2 log n− (m2 − 1) log log n + O(1),

then λ1 < λ2, or λ1 = λ2 and m1 > m2. We write (λ2, m2) > (λ1, m1). This
gives a total ordering on pairs (λ, m) ∈ Q×N. If f2(n) = f1(n) + O(1), we
say that the functions are asymptotically similar and write f2 ∼ f1. Here the
pairs satistfy (λ2, m2) = (λ1, m1).

The main idea in attacking our problem is to simplify the form of K(w).
The following theorem and corollary is useful for this purpose.

Theorem 3.3. Suppose that K1, K2 satisfy

0 ≤ cK1(ω) ≤ K2(ω)

for all ω ∈ Ω and some constant c > 0. Then,

f( · , Ω, K2) ≥ f( · , Ω, K1).

Proof. Compare the zeta functions corresponding to K1 and to K2.

Corollary 3.4. Suppose there exists positive constants c1, c2 such that

c1K2(ω) ≤ K1(ω) ≤ c2K2(ω)

for all ω ∈ Ω. Then,

f( · , Ω, K1) ∼ f( · , Ω, K2).

In the next theorem, we show that we can replace K(ω) with a function
Q(ω) quadratic in the pi(ω), and shrink the domain to integration to a local
neighborhood of the variety V(Q) = {ω ∈ Ω : Q(ω) = 0}. The theorem hints
that the asymptotic coefficients λ and m are invariants of V(Q). In fact, λ
is known as the real log-canonical threshold.

Theorem 3.5. For all ε > 0, the complexity f(n) of the model is asymptot-
ically similar to f(n, ΩQ≤ε, Q) where

Q(ω) = ‖ p(ω)− q ‖2 =
k∑

i=1

(pi(ω)− qi)
2.
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Proof. First, rewrite the Kullback information as

K(ω) =
k∑

i=1

qi(log
qi

pi

+
pi

qi

− 1) =
k∑

i=1

qif(
pi

qi

).

where l(x) = − log x + x− 1. Now, given δ > 0, suppose K(ω) ≤ δ. Then,

l(
pi

qi

) =
1

k

k∑
i=1

l(
pi

qi

)

<
1

k

k∑
i=1

qil(
pi

qi

)

=
1

k
K(ω) ≤ δ/k.

Since l(x) is convex and attains the minimum 0 at x = 1, there exists non-zero
constants c1, c2 such that

c1(x− 1)2 ≤ l(x) ≤ c2(x− 1)2

for all x satisfying l(x) < δ/k. Thus, if ω satisfies K(ω) ≤ δ,

c1

k∑
i=1

qi(
pi

qi

− 1)2 ≤ K(ω) ≤ c2

k∑
i=1

qi(
pi

qi

− 1)2.

Since the qi are non-zero and bounded, we have

c3Q(ω) ≤ K(ω) ≤ c4Q(ω) (4)

where c3 = c1 mini(1/qi) and c4 = c2 maxi(1/qi). Hence, by Corollary 3.4,

f( · , ΩK≤δ, Q) ∼ f( · , ΩK≤δ, K). (5)

Next, we write the stochastic complexity as

f(n) = − log[

∫
ΩK≤δ

e−nK(ω)dω +

∫
ΩK>δ

e−nK(ω)dω].

The first integral is bounded below by

I1(n) =

∫
ΩK≤δ

e−nK(ω)dω ≥
∫

ΩK≤δ

e−nδdω = c5e
−nδ
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while the second integral is bounded above by

I2(n) =

∫
ΩK>δ

e−nK(ω)dω ≤
∫

ΩK>δ

e−nδdω = c6e
−nδ

where the constants c5, c6 are measures of the subsets ΩK≤δ and ΩK>δ re-
spectively. By the regularity condition, c5 6= 0, so

I1(n) ≤ I1(n) + I2(n) ≤ I1(n) +
c6

c5

I1(n) = (1 +
c6

c5

)I1(n).

Hence, by taking logarithms, we observe that

f( · ) ∼ − log I1( · ).

In other words,

f( · , Ω, K) ∼ f( · , ΩK≤δ, K). (6)

We need a few more analytic arguments. Let δ′ = δ/c4. Then, by (4),

ΩQ≤δ′ ⊂ ΩK≤δ

and thus,
ΩQ≤δ′ = (ΩK≤δ)Q≤δ′ .

Therefore, the argument which proved (6) also shows that

f( · , ΩK≤δ, Q) ∼ f( · , ΩQ≤δ′ , Q). (7)

Similarly,

f( · , Ω, Q) ∼ f( · , ΩQ≤δ′ , Q), (8)

f( · , Ω, Q) ∼ f( · , ΩQ≤ε, Q). (9)

Combining (5-9) completes the proof.

This theorem shifts our focus from the analytic Kullback information
K(ω) to the polynomial

Q(ω) =
k∑

i=1

(pi(ω)− qi)
2.

This allows us to use tools from algebraic geometry to solve our problem.
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4 Resolution of Singularities

In the previous section, we reduced our problem to finding the asymptotics
of the minus-log-integral of e−nQ(ω) in a neighborhood ΩQ≤ε of V(Q) where

Q(ω) =
k∑

i=1

(pi(ω)− qi)
2.

Since Ω is compact, the neighborhood ΩQ≤ε is also compact, so we can cover
it with finitely many open neighborhoods

Wx = {ω ∈ Ω : |ω − x| < δ}

where x ∈ V(Q)(x) and δ > 0 is fixed over all x. Let {φx} be a partition of
unity induced by this cover. Then, the zeta function may be rewritten as

J(z) =

∫
ΩQ≤ε

Q(w)zdω

=
∑

x

∫
Wx

Q(w)zφx(ω)dω

Since this sum is finite, the pair (λ, m) for J(z) recording its largest pole
(−λ) and multiplicity m is the smallest of the pairs (λx, mx) for each

Jx(z) =

∫
Wx

Q(w)zdω. (10)

Furthermore, δ can be as small as we like, as the next lemma shows.

Lemma 4.1. For every δ > 0, there exists some ε > 0 such that

ΩQ≤ε ⊂
⋃

x∈V(Q)

Bx(δ).

Proof. Suppose on the contrary that there exists a sequence ωn ∈ Ω such that
Q(ωn) ≤ 1/n and |ωn−x| > δ for all x ∈ V(Q). Since Ω is compact, {ωn} has
a convergent subsequence with limit ω. Since Q is continuous, Q(ωn) ≤ 1/n
implies that Q(ω) = 0 but |ωn−x| > δ for all x ∈ V(Q), a contradiction.
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Now, to find the poles of Jx(z), a particular change of variables known as
a resolution of singularities comes in useful. In 1964, Hironaka proved that
such resolutions always exists. The following theorem of Atiyah is a special
case of Hironaka’s original result [5], and it shows that a local resolution of
singularities with desirable properties exists.

Theorem 4.2. Let Ω ⊂ Rd be a neighborhood of the origin, and K : Ω → R
a non-constant real analytic function satisfying K(0) = 0. Then, there exists
a triple (M, W, g) where

1. W ⊂ Ω is an open neighborhood of the origin,

2. M is a d-dimensional real analytic manifold,

3. g : M→ W is a real analytic map

satisfying the following properties.

1. g is proper, i.e. the inverse image of any compact set is compact.

2. g is a real analytic isomorphism between M\M0 and W \W 0 where
W 0 = {ω ∈ W : K(ω) = 0} and M0 = {µ ∈M : K(g(µ)) = 0}.

3. For any P ∈ M0, there exists a local chart MP with coordinates µ =
(µ1, µ2, . . . µd) such that P is the origin and

K(g(µ)) = cµσ1
1 µσ2

2 · · ·µσd
d = cµσ

where σ1, σ2, . . . , σd are non-negative integers and the constant c equals
1 or −1. Furthermore, the Jacobian determinant equals

|g′(µ)| = h(u)µτ1
1 µτ2

2 · · ·µ
τd
d = h(µ)µτ

where h(µ) 6= 0 is a real analytic function and τ1, τ2, . . . , τd are non-
negative integers.

Coming back to Jx(z), Atiyah’s theorem implies that there is a d-dimen-
sional manifold M and a real analytic map g : M→ W satisfying the above
properties on charts {MP} forming a finite cover of M. A similar partition
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of unity argument shows that the pair (λ, m) for Jx(z) is the smallest of the
pairs (λP , mP ) for each

JP (z) =

∫
MP

K(g(µ))z|g′(µ)|dµ

=

∫
MP

µ2zσ+τh(µ)dµ

From this equation, it follows that largest pole (−λP ) is determined by

λP = min
1≤j≤d

τj + 1

2σj

and its multiplicity mP is the number of arguments j that attain this mini-
mum. Thus, in summary, our original problem is solved if we can find a local
resolution of singularities at each point x ∈ V(Q).

In practice, such local resolution maps g are often difficult to find. How-
ever, simple algorithms exist when the polynomial Q(ω) is non-degenerate [8].
This will be described in the next section.

5 Newton Diagrams and Toric Modifications

We begin with some useful notations from [1, 9]. Given a polynomial

Q(ω) =
∑

α

cαωα,

where ω = (ω1, . . . , ωd) and each α = (α1, . . . , αd) ∈ Nd, define its Newton
polyhedron Γ+(Q) to be the convex hull in Rd of the set

{α + α′ : cα 6= 0, α′ ∈ Rd
≥0}.

A subset γ ⊂ Γ+(Q) is a face if there exists some β ∈ Rd
≥0 such that

γ = {α ∈ Γ+(Q) : 〈α, β〉 ≤ 〈α′, β〉 for all α′ ∈ Γ+(Q)}.

Dually, the normal cone at γ is the set of all β ∈ Rd
≥0 satisfying the above

condition. Note that the union of all the normal cones gives a partition of
the orthant Rd

≥0. We call this partition the normal fan. The union of all the
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compact faces of Γ+(Q) is the Newton diagram Γ(Q). For each compact face
γ of Γ+(Q), define the face polynomial

Qγ(ω) =
∑
α∈γ

cαωα.

The principal part of Q is the polynomial

Q0(ω) =
∑

α∈Γ(Q)

cαωα.

We say that Q is non-degenerate if

V
(

∂Qγ

∂ω1

,
∂Qγ

∂ω2

, . . . ,
∂Qγ

∂ωd

)
⊆ V(ω1ω2 · · ·ωd)

for all compact faces γ of Γ+(Q). Otherwise, Q is degenerate.
Non-degeneracy greatly facilitates the resolution of singularities. Indeed,

when Q is non-degenerate, there exists a local resolution g : M→ W around
the origin with chart maps gP : MP → W given by monomial mappings

ω1 = µβ11

1 µβ12

2 · · ·µβ1d

d

ω2 = µβ21

1 µβ22

2 · · ·µβ2d

d
...

ωd = µβd1
1 µβd2

2 · · ·µβdd

d

(11)

which we write as ω = µβ, β = (βij). Furthermore, each chart map satisfies
det(β) = ±1. We call such a chart map a toric modification.

We now describe how to find the chart maps from the Newton polyhedron.
We say an integer vector β ∈ Zd is primitive if its coordinates are co-prime.
A cone spanned by integer vectors β1, . . . , βr is regular if there exists integer
vectors βr+1, . . . , βd such that det(β) = ±1, β = (βj) and each βj is primitive.
A fan (union of disjoint cones) F ′ is regular if all its cones are regular, and is
a subdivision of another fan F if they partition the same set and every cone of
F ′ is contained in some cone of F . Given the normal fan F of Γ+(Q), we may
add primitive vectors to get a regular subdivision F ′. Then, each maximal
cone of F ′ spanned by some {β1, . . . , βd} describes a toric modification ω = µβ

where the matrix β has columns βj. Together, they define a local resolution
around the origin as was desired.
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Suppose now that upon substitution of (11) into Q(ω), we have

Q(µβ) = µ2σ1
1 µ2σ2

2 · · ·µ2σd
d a(µ)

for some polynomial a(µ) > 0 for all µ. Here the exponents of the µi are
even because Q(ω) is non-negative. Define β+j to be the sum of all βij in the
j-th column. Then, the largest pole (−λ) of the zeta function is given by

λ = min
1≤j≤d

β+j

2σj

(12)

and its multiplicity m is the number of j at which the minimum is attained.
One can show that geometrically, 1/λ is the smallest real number such that
(1/λ)1 ∈ Γ+(Q) where 1 is the vector of ones, and m is the number of
codimension-one faces meeting (1/λ)1.

Regardless of the non-degeneracy of Q, the next proposition shows that
it suffices to study its principal part.

Proposition 5.1. Locally at the origin, the complexity of Q is asymptotically
similar to the complexity of Q0.

Proof. There exists a sufficiently small neighborhood W of the orgin and
positive constants c1, c2 such that

c1Q0(ω) ≤ Q(ω) ≤ c2Q0(ω) for all ω ∈ W

where Q0 is the principal part of Q. By Corollary 3.4, the result follows.

If the principal part Q0 is degenerate, we can try a change of variable
on Q0, take the principal part of the resulting polynomial and hope that it
is non-degenerate. Repeatedly taking principal parts and changing variables
might allow us to find a local resolution in degenerate situations.

6 Example

Consider the model that is the two-mixture of the independence model with
two ternary random variables. It consists of 3× 3 singular matrices (pij)

2
i,j=0

whose entries sum to one. The defining equations are

pij(σ, θ, ρ) = σ0θ
(1)
i θ

(2)
j + σ1ρ

(1)
i ρ

(2)
j .
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where σ ∈ ∆1 and θ(1), θ(2), ρ(1), ρ(2) ∈ ∆2. Let Ω be the parameter space
∆1 ×∆4

2. In the notation of [4], this corresponds to the two-mixture of the
independence model with k = 2, s1 = s2 = 1 and t1 = t2 = 2. Assume that
the true distribution that we are sampling from is the uniform distribution
qij = 1

9
, and let u = (uij) be the frequency counts of a sample of size n. We

want to estimate the marginal likelihood integral

Zn(u) =

∫
Ω

∏
i,j

pij(σ, θ, ρ)uijdσdθdρ.

For this example, we study the zeta function of

Q(σ, θ, ρ) =
2∑

i,j=0

(σ0θ
(1)
i θ

(2)
j + σ1ρ

(1)
i ρ

(2)
j − 1

9
)2 =

2∑
i,j=0

f 2
ij

6.1 Toric Modification

We compute the asymptotics of the complexity of Q around the singular
point x with coordinates

σ = (0, 1),

θ(1) = θ(2) = (0, 0, 1),

ρ(1) = ρ(2) = (1/3, 1/3, 1/3).

We do a change of variable to bring the origin to this point.

σ = (a, 1− a),

θ(1) = (b0, b1, 1− b0 − b1),

θ(2) = (c0, c1, 1− c0 − c1),

ρ(1) = (1/3 + d0, 1/3 + d1, 1/3 + d2), d2 = −d0 − d1,

ρ(2) = (1/3 + e0, 1/3 + e1, 1/3 + e2), e2 = −e0 − e1.

Thus, in terms of the new variables we have

Q(a, b, c, d, e) =
1
81

∑2
i,j=0[a(9bicj − 9diej − 3di − 3ej − 1) + 9diej + 3di + 3ej]

2.
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The principal part of Q is

Q′(a, b, c, d, e) = 1
9
[6(d1d2 + e1e2 + d2

1 + d2
2 + e2

1 + e2
2)

−6a(d1 + d2 + e1 + e2) + 8a2].

From this, one can check that Q is non-degenerate. Here we use Singular to
resolve the variety V(Q′) locally at the origin. This gives us the five charts
below, which correspond to the maximal cones of a regular subdivision of the
normal fan of the Newton polyhedron of Q. In what follows, H denotes the
determinant of the Jacobian of the change of variable.

1. Chart 1:

a = e2a
′ H = e4

2

d1 = e2d
′
1 9Q′ = 2e2

2(3 + 4a′2 − 3a′ + 3d′21 + 3d′22 + 3d′1d
′
2

d2 = e2d
′
2 −3a′d′1 − 3a′d′2 − 3a′e′1 + 3e′21 + 3e′1)

e1 = e2e
′
1 (λ, m) = (5

2
, 1)

2. Chart 2:

a = e1a
′ H = e4

1

d1 = e1d
′
1 9Q′ = 2e2

1(3 + 4a′2 − 3a′ + 3d′21 + 3d′22 + 3d′1d
′
2

d2 = e1d
′
2 −3a′d′1 − 3a′d′2 − 3a′e′2 + 3e′22 + 3e′2)

e2 = e1e
′
2 (λ, m) = (5

2
, 1)

3. Chart 3:

a = d2a
′ H = d4

2

d1 = d2d
′
1 9Q′ = 2d2

2(3 + 4a′2 − 3a′ + 3e′21 + 3e′22 + 3e′1e
′
2

e1 = d2e
′
1 −3a′e′1 − 3a′e′2 − 3a′d′1 + 3d′21 + 3d′1)

e2 = d2e
′
2 (λ, m) = (5

2
, 1)

4. Chart 4:

a = d1a
′ H = d4

1

d2 = d1d
′
2 9Q′ = 2d2

1(3 + 4a′2 − 3a′ + 3e′21 + 3e′22 + 3e′1e
′
2

e1 = d1e
′
1 −3a′e′1 − 3a′e′2 − 3a′d′2 + 3d′22 + 3d′2)

e2 = d1e
′
2 (λ, m) = (5

2
, 1)
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5. Chart 5:

d1 = ad′1 H = a4

d2 = ad′2 9Q′ = 2a2(4− 3d1 − 3d2 − 3e1 − 3e2

e1 = ae′1 +3d2
1 + 3d1d2 + 3d2

2 + 3e2
1 + 3e1e2 + 3e2

2)
e2 = ae′2 (λ, m) = (5

2
, 1)

Note that the charts come with blowing up V(Q′) at the subvariety

V(a, d1, d2, e1, e2).

Also, in each case, we can use (12) to derive the value of λ and m. Therefore,
the asymptotics at this singular point x is given by λx = 5

2
, mx = 1.

6.2 Non-toric modification

We compute the asymptotics around the singular point

σ = (1/2, 1/2),

θ(1) = θ(2) = (1/3, 1/3, 1/3),

ρ(1) = ρ(2) = (1/3, 1/3, 1/3).

We do a change of variable to bring the origin to this point.

σ = (1/2 + a, 1/2− a),

θ(1) = (1/3 + b0, 1/3 + b1, 1/3 + b2), b2 = −b0 − b1,

θ(2) = (1/3 + c0, 1/3 + c1, 1/3 + c2), c2 = −c0 − c1,

ρ(1) = (1/3 + d0, 1/3 + d1, 1/3 + d2), d2 = −d0 − d1,

ρ(2) = (1/3 + e0, 1/3 + e1, 1/3 + e2), e2 = −e0 − e1.

Thus, in terms of the new variables we have

Q(a, b, c, d, e) = 1
36

∑2
i,j=0[2a(bi + cj − di − ej + 3bicj − 3diej)

+(bi + cj + di + ej + 3bicj + 3diej)]
2

The principal part of Q is

Q′(a, b, c, d, e) = 1
6
[b2

1 + b2
2 + c2

1 + c2
2 + d2

1 + d2
2 + e2

1 + e2
2

+b1b2 + c1c2 + d1d2 + e1e2

+c1e2 + c2e1 + b1d2 + b2d1

+2(b1d1 + b2d2 + c1e1 + c2e2)].
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The Newton diagram of this polynomial has vertices corresponding to the
monomials b2

1, b
2
2, c

2
1, c

2
2, d

2
1, d

2
2, e

2
1, and e2

2. The face with vertices b2
1 and d2

1 has
the face polynomial (b1 + d1)

2 which is degenerate. This suggests applying
the following change of variable to Q′.

b1 = b′1, b2 = b′2
c1 = c′2, c2 = c′2
d1 = d′1 − b′1, d2 = d′2 − b′2
e1 = e′1 − c′1, e2 = e′2 − c′2

The Jacobian determinant of this change of variable is 1. The new polynomial
(after removing the “primes” in the notation) is

Q(a, b, c, d, e) = d2
1 + d1d2 + d2

2 + e2
1 + e1e2 + e2

2

This polynomial is non-degenerate. Using Singular, we found the following
resolution of singularities.

1. Chart 1:

d1 = e2d
′
1 H = e3

2

d2 = e2d
′
2 Q′ = e2

2(d
′2
1 + d′1d

′
2 + d′22 + e′21 + e′1 + 1)

e1 = e2e
′
1 (λ, m) = (2, 1)

2. Chart 2:

d1 = e1d
′
1 H = e3

1

d2 = e1d
′
2 Q′ = e2

1(d
′2
1 + d′1d

′
2 + d′22 + e′22 + e′2 + 1)

e2 = e1e
′
2 (λ, m) = (2, 1)

3. Chart 3:

d1 = d2d
′
1 H = d3

2

e1 = d2e
′
1 Q′ = d2

2(e
′2
1 + e′1e

′
2 + e′22 + d′21 + d′1 + 1)

e2 = d2e
′
2 (λ, m) = (2, 1)

4. Chart 4:

d2 = d1d
′
2 H = d3

1

e1 = d1e
′
1 Q′ = d2

1(e
′2
1 + e′1e

′
2 + e′22 + d′22 + d′2 + 1)

e2 = d1e
′
2 (λ, m) = (2, 1)

Therefore, the asymptotics at this point x is given by (λx, mx) = (2, 1).
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6.3 Other Singularities

We were not able to show that the asymptotics of the complexity of Q at all
other points on the variety V(Q) are at least that given by (λ, m) = (2, 1),
but we conjecture that asymptotically,

E[− log Zn] = n log 9 + 2 log n + O(1).

In general, we hope to find an algorithm which takes an arbitrary mixture
of independence models as defined in [4] and computes the asymptotic coef-
ficients (λ, m) for the model.

7 Comparison with Exact Integrals

In this section, we consider the Cheating Coin Flipper example [2]. It is the
two-mixture of the independence model of four identically distributed binary
random variables. The defining equations are

pi(σ, θ, ρ) =

(
4

i

)
(σ0θ

i
0θ

4−i
1 + σ1ρ

i
0ρ

4−i
1 ), for i = 0, 1, 2, 3, 4,

where σ, θ, ρ ∈ ∆1. In the notation of [3], this corresponds to the two-mixture
of the independence model with k = 1, s1 = 4 and t1 = 1. We assume that
the true distribution (qi) comes from parameters σ = (1, 0), θ = ρ = (1

2
, 1

2
),

and choose samples u of size n where n is a multiple of 16 and

ui =
n

16

(
4

i

)
= nqi.

We want to compute the marginal likelihood integral

Zn(u) =

∫
∆3

1

pu0
0 pu1

1 pu2
2 pu3

3 pu4
4 dσdθdρ.

According to [9], we have the asymptotics

E[− log Zn(u)] = −n

4∑
i=0

qi log qi +
3

4
log n + O(1). (13)
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Table 1: Comparison of exact computations with asymptotics

n F16+n − Fn g(n)
16 0.21027043 0.225772497
32 0.12553837 0.132068444
48 0.08977938 0.093704053
64 0.06993586 0.072682510
80 0.05729553 0.059385934
96 0.04853292 0.050210092
112 0.04209916 0.043493960

We use the methods of [4] to compute Zn(u) exactly and compare its values
with the above asymptotics. Recall the stochastic complexity

Fn = n

4∑
i=0

qi log qi − log Zn(u).

By (13), we should expect

F16+n − Fn ≈ 3

4
(log(16 + n)− log n) = g(n).

Indeed, a comparison is shown in Table 1 and the approximation is reasonably
accurate. Meanwhile, the Bayesian Information Criterion (BIC) predicts

F16+n − Fn ≈ 3

2
(log(16 + n)− log n) = g(n),

which will be off by a factor of 2 from the actual values.
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