Math 255 Homework 5

26 Feb, 2019
6.1 Let g be a holomorphic function on a Riemann surface S, and let $\gamma:[a, b] \rightarrow S$ be a closed piecewisesmooth path in S. Then by Example 6.14(2), $\int_{\gamma} d g=g(\gamma(b))-g(\gamma(a))=0$ since $\gamma(b)=\gamma(a)$.
Let η be the holomorphic differential on \mathbb{C} / Λ satisfying $\pi^{*} \eta=d z$. If we fix some nonzero $\lambda \in \Lambda$ and take the piecewise-smooth path $\gamma:[0,1] \rightarrow \mathbb{C} / \Lambda$ defined by $\gamma(t)=\Lambda+t \lambda$, then $\int_{\gamma} \eta=\lambda$, so η is not exact (see the discussion on page 150 for details).
6.3 Let $d z$ be the meromorphic differential on $\mathbb{P}^{1}=\mathbb{C} \cup\{\infty\}$, where we identify $z \in \mathbb{C}$ with $[z, 1] \in \mathbb{P}^{1}$ and ∞ with $[1,0]$. Let $\phi: \mathbb{P}^{1}-\{\infty\} \rightarrow \mathbb{C}, \psi: \mathbb{P}^{1}-\{0\} \rightarrow \mathbb{C}$ be holomorphic charts defined by $\phi[x, y]=x / y$, $\psi[x, y]=y / x$. To study the pole at ∞, we consider the chart ψ, with inverse $\psi^{-1}(z)=[1 / z, 1]$ if $z \neq 0$, and $[1,0]$ if $z=0$. Since the meromorphic function $\left(1 \circ \psi^{-1}\right)\left(z \circ \psi^{-1}\right)^{\prime}=-\frac{1}{z^{2}}$ has a pole of order 2 at $\psi(\infty)=0$, hence $d z$ has a pole of order 2 at ∞.
We can write any meromorphic differential $h d g$ on \mathbb{P}^{1} as $f d z$, where $f=h g^{\prime}$ is meromorphic on \mathbb{P}^{1}. Suppose that $f d z$ is holomorphic. Then on the chart ϕ, the function $\left(f \circ \phi^{-1}\right)\left(z \circ \phi^{-1}\right)^{\prime}=f$ must be holomorphic. On the chart ψ, the function $\left(f \circ \psi^{-1}\right)\left(z \circ \psi^{-1}\right)=f\left(\frac{1}{z}\right)\left(-\frac{1}{z^{2}}\right)=-w^{2} f(w)$ must be holomorphic, where $w=\frac{1}{z}$. So as $w \rightarrow \infty, w^{2} f(w)$ must tend to a finite limit. Conversely, if these latter conditions hold then $f d z$ has no poles and is a holomorphic differential.
If $f d z$ is a holomorphic differential on \mathbb{P}^{1}, then from the above, f must have a zero of order at least 2 at ∞, and must also be constant, which is a contradiction. Hence there are no holomorphic differentials on \mathbb{P}^{1}.
6.5 Let C_{Λ} be the nonsingular cubic curve in \mathbb{P}_{2} associated with a lattice Λ, defined by the polynomial $y^{2} z-4 x^{3}+g_{2}(\Lambda) x z^{2}+g_{3}(\Lambda) z^{3}$. Let $p=\left[a_{1}, b_{1}, 1\right]$ and $q=\left[a_{2}, b_{2}, 1\right]$ be points of $C_{\Lambda}, a_{1} \neq a_{2}$, and let L be the line through p, q. By solving a system of linear equations, we can write the defining equation of L as $\left(b_{1}-b_{2}\right) x+\left(a_{2}-a_{1}\right) y+\left(a_{1} b_{2}-a_{2} b_{1}\right) z=0$. Let $r=\left[a_{3}, b_{3}, 1\right]$ be the other point of intersection of L with C_{Λ}. To compute a_{3}, we set $z=1$ and eliminate y from the equation for C_{Λ} using the equation for L, to get

$$
\begin{equation*}
\left(\frac{a_{2} b_{1}-a_{1} b_{2}+\left(b_{2}-b_{1}\right) x}{a_{2}-a_{1}}\right)^{2}=4 x^{3}-g_{2}(\Lambda) x-g_{3}(\Lambda) . \tag{1}
\end{equation*}
$$

This is a cubic polynomial in x, and since the sum of the roots $a_{1}+a_{2}+a_{3}$ is the coefficient of x^{2} divided by 4 , we get

$$
\begin{equation*}
a_{3}=\frac{1}{4}\left(\frac{b_{1}-b_{2}}{a_{1}-a_{2}}\right)^{2}-\left(a_{1}+a_{2}\right) . \tag{2}
\end{equation*}
$$

Substituting this into the equation for L, we get

$$
\begin{equation*}
b_{3}=\left(\frac{b_{1}-b_{2}}{a_{1}-a_{2}}\right) a_{3}+\left(\frac{a_{1} b_{2}-a_{2} b_{1}}{a_{1}-a_{2}}\right) . \tag{3}
\end{equation*}
$$

Let $z_{1}, z_{2} \notin \Lambda$ and $z_{1} \notin \Lambda \pm z_{2}$. Then since $z_{1}+z_{2}-\left(z_{1}+z_{2}\right) \in \Lambda$, by Abel's theorem, there exists a line L in \mathbb{P}_{2} intersecting C_{Λ} at $u\left(\Lambda+z_{1}\right), u\left(\Lambda+z_{2}\right)$ and $u\left(\Lambda-\left(z_{1}+z_{2}\right)\right)$. Let $a_{i}=\wp\left(z_{i}\right), b_{i}=\wp^{\prime}\left(z_{i}\right)$ for
$i=1,2$ and let $a_{3}=\wp\left(-\left(z_{1}+z_{2}\right)\right), b_{3}=\wp^{\prime}\left(-\left(z_{1}+z_{2}\right)\right)$. Since \wp is even, $a_{3}=\wp\left(z_{1}+z_{2}\right)$. Substituting these into Equation 2, we get

$$
\begin{equation*}
\wp\left(z_{1}+z_{2}\right)=\frac{1}{4}\left(\frac{\wp^{\prime}\left(z_{1}\right)-\wp^{\prime}\left(z_{2}\right)}{\wp\left(z_{1}\right)-\wp\left(z_{2}\right)}\right)^{2}-\wp\left(z_{1}\right)-\wp\left(z_{2}\right) . \tag{4}
\end{equation*}
$$

If we let $z:=z_{1}, z_{2}=z+w$ and take the limit as $w \rightarrow 0$, then we get

$$
\begin{equation*}
\wp(2 z)=\frac{1}{4}\left(\frac{\wp^{\prime \prime}(z)}{\wp^{\prime}(z)}\right)^{2}-2 \wp(z) . \tag{5}
\end{equation*}
$$

6.6 Let $p \neq[0,1,0]$ be a point of the cubic curve C_{Λ} associated with a lattice Λ in \mathbb{C}. From Remark 6.22 , p has order 2 , or $p+p=0$, if and only if the tangent to C_{Λ} at p passes through the identity, which is $[0,1,0]$. The points of order 1 or 2 correspond under the group isomorphism $u: \mathbb{C} / \Lambda \rightarrow C_{\Lambda}$ to points of order 1 or 2 in \mathbb{C} / Λ, and there are 4 such points which can be written in the form $\Lambda+\frac{j}{2} \omega_{1}+\frac{k}{2} \omega_{2}$, for $j, k \in\{0,1\}$. These points form a subgroup of C / Λ isomorphic to $C_{2} \times C_{2}$.
6.7 Let n be a positive integer. If $p \in C_{\Lambda}$ has order dividing n, then $n p=0$, which by Abel's theorem occurs if and only if $n t \in \Lambda$ for some $t \in \mathbb{C}$ such that $u(\Lambda+t)=p$. So the points of order dividing n correspond to points of order dividing n in \mathbb{C} / Λ, and there are precisely n^{2} such points which can be written in the form $\Lambda+\frac{j}{n} \omega_{1}+\frac{k}{n} \omega_{2}$, where $j, k \in\{0,1, \ldots, n-1\}$. These points form a subgroup of \mathbb{C} / Λ isomorphic to the product of two cyclic groups of order n.
Let $q \in C_{\Lambda}$, such that q is not a point of inflection. Then the points in C_{Λ} whose tangent lines pass through q are the points p such that $p+p=-q$, so that $p+p+q=0$. Let $t, v \in \mathbb{C}$ such that $u(\Lambda+t)=p$ and $u(\Lambda+v)=q$. Then by Abel's theorem, $p+p+q=0$ if and only if $2 t+v \in \Lambda$, or $t \in \frac{1}{2} \Lambda-\frac{1}{2} v$. So there are exactly four possibilities for t, which are $t=\frac{j}{2} \omega_{1}+\frac{k}{2} \omega_{2}-\frac{1}{2} v, j, k \in\{0,1\}$, and these correspond to the four points in C_{Λ} other than q whose tangent lines pass through q.
6.8 Let $u, v, w \in \mathbb{C}-\Lambda$, such that u, v, w are distinct modulo Λ. By Abel's theorem, $u+v+w \in \Lambda$ if and only if there is a line L in \mathbb{P}^{2} which intersects C_{Λ} at $\left[\wp(u), \wp^{\prime}(u), 1\right],\left[\wp(v), \wp^{\prime}(v), 1\right],\left[\wp(w), \wp^{\prime}(w), 1\right]$, which happens if and only if

$$
\operatorname{det}\left(\begin{array}{lll}
\wp(u) & \wp^{\prime}(u) & 1 \\
\wp(v) & \wp^{\prime}(v) & 1 \\
\wp(w) & \wp^{\prime}(w) & 1
\end{array}\right)=0
$$

