Math 255 Homework 4

19 Feb, 2019
5.4 Let R be a compact connected Riemann surface. Suppose that there is a nonconstant holomorphic function $f: R \rightarrow \mathbb{C}$. Then f extends to a holomorphic function to \mathbb{P}^{1}, which by Exercise 5.3 is surjective. Hence the image of f must contain ∞, which is a contradiction.
5.9 Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be a holomorphic doubly periodic function, with periods ω_{1}, ω_{2}, and let $\Lambda=\left\{n \omega_{1}+m \omega_{2}\right.$: $n, m \in \mathbb{Z}\}$. By Example 5.42, f corresponds to a holomorphic function $h: \mathbb{C} / \Lambda \rightarrow \mathbb{C}$. Since \mathbb{C} / Λ is a compact connected Riemann surface, Exercise 5.4 implies that h is constant. So f must also be constant.
5.10 Let $\tilde{\wp}: \mathbb{C} / \Lambda \rightarrow \mathbb{P}^{1}$ be defined by $\tilde{\wp}(\Lambda+z)=\wp(z)$. Consider the holomorphic atlas on \mathbb{P}^{1} given by the charts $\psi_{1}: W_{1} \rightarrow \mathbb{C}, \psi_{2}: W_{2} \rightarrow \mathbb{C}$, where $W_{1}=\mathbb{P}^{1}-\{\infty\}$ and $W_{2}=\mathbb{P}^{1}-\{0\}$, such that $\psi_{1}[x, y]=x / y$ and $\psi_{2}[x, y]=y / x$ (see Example $5.40(\mathrm{~d})$).
Let $\pi: \mathbb{C} \rightarrow \mathbb{C} / \Lambda$ be the map $z \mapsto \Lambda+z$. Consider the holomorphic charts on \mathbb{C} / Λ given by $\phi_{\alpha}=\left(\left.\pi\right|_{U_{\alpha}}\right)^{-1}: \pi\left(U_{\alpha}\right) \rightarrow U_{\alpha}$, like in Example 5.42.
For $\Lambda+z \in \mathbb{C} / \Lambda$, take holomorphic charts ϕ_{α}, ψ_{i} such that $\Lambda+z \in U_{\alpha}$ and $\tilde{\rho}(\Lambda+z) \in W_{i}$. To show that $\tilde{\wp}$ is holomorphic, we check that $\psi_{i} \circ \tilde{\wp} \circ \phi_{\alpha}^{-1}: \phi_{\alpha}\left(U_{\alpha} \cap \tilde{\wp}^{-1}\left(W_{i}\right)\right) \rightarrow \mathbb{C}$ is holomorphic. Observe that $\tilde{\wp} \circ \phi_{\alpha}^{-1}=\tilde{\wp} \circ \pi=\wp$, and $U_{\alpha} \cap \tilde{\wp}^{-1}\left(W_{i}\right)$ is the set of points in U_{α} which are not in Λ, so \wp is holomorphic on $\pi^{-1}\left(U_{\alpha} \cap \tilde{\wp}^{-1}\left(W_{i}\right)\right)=\phi_{\alpha}\left(U_{\alpha} \cap \tilde{\wp}^{-1}\left(W_{i}\right)\right)$, hence $\psi_{i} \circ \tilde{\wp} \circ \phi_{\alpha}^{-1}$ is holomorphic. Thus $\tilde{\wp}$ is holomorphic.
Let $f(z)=\left(\wp(z)-\wp\left(\frac{1}{2} \omega_{1}\right)\right)\left(\wp(z)-\wp\left(\frac{1}{2} \omega_{2}\right)\right)\left(\wp(z)-\wp\left(\frac{1}{2} \omega_{1}+\frac{1}{2} \omega_{2}\right)\right)$ and let $g(z)=f(z) / \wp^{\prime}(z)^{2}$. Since \wp, \wp^{\prime} have poles of order 2 and 3 respectively at every $z \in \Lambda$, and no other poles, hence g is holomorphic at each $z \in \Lambda$. For $z \in \frac{1}{2} \Lambda-\Lambda$, by Lemma 5.13, $\wp(z)=\wp\left(\frac{1}{2} \omega_{1}\right)$ or $\wp\left(\frac{1}{2} \omega_{2}\right)$ or $\wp\left(\frac{1}{2} \omega_{1}+\frac{1}{2} \omega_{2}\right)$. So f has zeros at each $z \in \frac{1}{2} \Lambda-\Lambda$, and these zeros have order 2 . Since \wp^{\prime} has a simple zero at each of these points, hence g is holomorphic at each $z \in \frac{1}{2} \Lambda-\Lambda$. Thus g is holomorphic on \mathbb{C}, since \wp^{\prime} has no other zeros. g is also doubly periodic since \wp, \wp^{\prime} are doubly periodic.
By Exercise 5.9, g is constant, so $g(z)=c$ for some constant c. Thus $\wp^{\prime}(z)^{2}=\frac{1}{c} f(z)=Q(\wp(z))$, where $Q(x)=\frac{1}{c}\left(x-\wp\left(\frac{1}{2} \omega_{1}\right)\right)\left(x-\wp\left(\frac{1}{2} \omega_{2}\right)\right)\left(x-\wp\left(\frac{1}{2} \omega_{1}+\frac{1}{2} \omega_{2}\right)\right)$ is a cubic polynomial.
5.12 Consider the polynomial $f=4 x^{3}-g_{2}(\Lambda) x-g_{3}(\Lambda)$. By the proof of Lemma $5.20, f$ has distinct roots. Hence the discriminant of f, which is $g_{2}(\Lambda)^{3}-27 g_{3}(\Lambda)^{2}$, is nonzero.
5.14 Suppose that there is a projective transformation of \mathbb{P}^{2} given by a diagonal matrix taking C to \tilde{C}, then this transformation is of the form $x \mapsto a x, y \mapsto b y, z \mapsto c z$ for $a, b, c \neq 0$. We can assume $c=1$ since this is a projective transformation. Substituting this into the equation for C, we get $b^{2} y^{2} z=4 a^{3} x^{3}-g_{2} a x z^{2}-g_{3} z^{3}$. Comparing this with the equation for \tilde{C}, we get $a^{3}=b^{2}, g_{2} a=b^{2} \tilde{g}_{2}$ and $g_{3}=b^{2} \tilde{g}_{3}$. We reparameterize this by letting $a=u^{2}$, then $b=u^{3}$, and $g_{2}=u^{4} \tilde{g}_{2}, g_{3}=u^{6} \tilde{g}_{3}$. So $J(C)=\frac{u^{12} \tilde{g}_{2}}{u^{12} \tilde{g}_{2}-27 * u^{12} \tilde{g}_{3}}=J(\tilde{C})$.
Conversely, suppose $J(C)=J(\tilde{C})$. Then $g_{2}^{3} \tilde{g}_{3}^{2}=\tilde{g}_{2}^{2} g_{3}^{2}$, so for some nonzero u we can write $\left(g_{3} / \tilde{g}_{3}\right)^{2}=$ $\left(g_{2} / \tilde{g}_{2}\right)^{3}=u^{12}$. Consider a projective transformation of the form $x \mapsto u^{2} x, y \mapsto u^{3} y$; this is given by a diagonal matrix. Then the equation of C is mapped to $y^{2} z=4 x-\left(g_{2} / u^{4}\right) x z^{2}-\left(g_{3} / u^{6}\right) z^{3}=$ $4 x-\tilde{g}_{2} x z^{2}-\tilde{g}_{3} z^{3}$, so this transformation takes C to \tilde{C}.
5.18 (i) Since C is nonsingular, there is no point $[x, y, z] \in C$ such that $\frac{\partial P}{\partial x}=\frac{\partial P}{\partial y}=\frac{\partial P}{\partial z}=0$, so the image of C is in \mathbb{P}^{2} and is well-defined. Euler's relation implies that the points in the image satisfy $x \frac{\partial P}{\partial x}+y \frac{\partial P}{\partial y}+z \frac{\partial P}{\partial z}=0$, so the image is defined by a homogeneous polynomial and is a projective curve.
(ii) Let C be a conic, with defining equation $P(x, y, z)=a_{1} x^{2}+a_{2} x y+a_{3} x z+a_{4} y^{2}+a_{5} y z+a_{6} z^{2}=0$. Then $\frac{\partial P}{\partial x}=2 a_{1} x+a_{2} y+a_{3} z, \frac{\partial P}{\partial y}=a_{2} x+2 a_{4} y+a_{5} z, \frac{\partial P}{\partial z}=a_{3} x+a_{5} y+2 a_{6} z$, so the polar mapping is linear and is a projective transformation. Hence the dual curve is also a nonsingular conic.
(iii) The polar mapping from C to \tilde{C} is defined by polynomials and so is holomorphic. Suppose the degree of C is at least 3. By Proposition 3.33(ii), C has at least one point of inflection. Since points of inflection correspond to cusps on the dual curve, hence \tilde{C} has a cusp, and so there is no holomorphic inverse.

