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3.3 A conic is a curve of the form a1x
2 + a2xy + a3xz + a4y

2 + a5yz + a6z
2, and has 6 coefficients, thus

the space of conics is 5-dimensional. Given 5 points in P2, each point specifies a linear constraint on
the coefficients, and since there are 5 dimensions, we can solve the system of equations to find a conic
containing the 5 points.

Let C be a projective curve of degree 4 in P2 with four singular points. Let D be a conic containing
the 4 singular points and another point of C. By Bézout’s theorem, if the two curves have no common
component, then they have 8 points of intersection counting multiplicities. Since the 4 singular points
have multiplicity greater than 1, and C and D have an additional point of intersection, hence the sum
of the intersection multiplicities is at least 9. Thus C and D must have a common component, which
implies C is reducible.

3.8 Let C be a projective curve in P2 defined by a homogeneous polynomial P , let α be a linear trans-
formation, and let Q = P ◦ α−1. We label the coordinates on P by x1, x2, x3 and the coordinates
on Q by v1, v2, v3, such that α−1(v1, v2, v3) = (x1, x2, x3). To compute the derivative of Q at some
v ∈ C3−{0}, we use the chain rule to get ∂Q

∂vi
= ∂P

∂x1

∂x1

∂vi
+ ∂P
∂x2

∂x2

∂vi
+ ∂P
∂x3

∂x3

∂vi
, for i = 1, 2, 3. Since α−1 is

a linear transformation, it is given by some matrix, and ∂xi

∂vj
is the (i, j)-th entry of the matrix. So we

get that the gradient of Q evaluated at v (as a column vector), is equal to the gradient of P evaluated
at α−1(v), multiplied on the left by the transpose of the matrix of α−1.

Applying the chain rule again, we get that the matrix of second derivatives of Q at v is the matrix of
second derivatives of P at α−1(v), multiplied on the right and the left by the matrix of α−1 and its
transpose respectively. By taking determinants, we get the desired identity on the Hessians.

This implies that if the Hessian of a polynomial vanishes at a point, it also vanishes after a linear
transformation, so the definition of an inflection point is invariant under projective transformations.

3.11 By Corollary 3.34, there is a projective transformation taking p to [0, 1, 0] and taking C to a curve of
the form y2z = x(x − z)(x − λz), where λ ∈ C, λ 6= 0, 1. We compose this with the transformation
x 7→ λ+1

3 z, y 7→ 1
2y, to get the equation

y2z = 4x3 − 4

3
(λ2 − λ+ 1)xz2 − 4

(
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2
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)
z3 (1)

So we have g2 = 4
3 (λ2−λ+1) and g3 = 4( 2

27λ
3− 1

9λ
2− 1

9λ+ 2
27 ). Then g32−27(g3)2 = 16λ2(λ−1)2 6= 0

since λ 6= 0, 1.

3.13 Suppose that C and D meet in exactly 9 points p1, . . . , p9. Suppose that some line L in P2 contains 4
of these points. By Bézout’s theorem, a line and a cubic and only meet in 3 points unless they have
a common component, thus C must contain L as a component. Applying the same argument to D,
this implies that C and D both contain L, and so cannot meet in exactly 9 points. Hence this is a
contradiction, and no line in P2 can contain four of the points.

Similarly, a conic can only meet a cubic in 6 points unless they have a common component. So if a conic
meets C in 7 points, it must have a common component with C, and similarly for D. Moreover, this
must be the same component, so C and D cannot meet in exactly 9 points. Hence no conic contains
seven of the points.

1



From exercise 3.3, there is at least one conic containing p1, . . . , p5. Moreover, since no line contains
four of these, this conic Q is unique.

Suppose that E contains p1, . . . , p8 and that R is not a linear combination of P and Q. Let q, r be
distinct points in P2. Then we can find a curve C defined by λP + µQ + νR = 0, with λ, µ, ν ∈ C,
which passes through p1, . . . , p8, q, r. We do this by substituting q, r into the equation to get two linear
equations in λ, µ, ν, which we can solve for a solution with nonzero λ, µ, ν.

Suppose that p8 lies in the line L through p6, p7, and choose q ∈ L, r 6∈ L ∪ Q. Then C contains
the four points p6, p7, p8, q ∈ L, so by Bézout’s theorem, C contains L as a component. So C is the
union of L and a conic, which must be Q since Q is the unique conic containing p1, . . . , p5. This is a
contradiction since r 6∈ L ∪ Q, so p6, p7, p8 cannot lie on a line. Applying the same argument to the
other points, we deduce that no three of p1, . . . , p8 lie on a line.

If p8 6∈ Q, and q, r ∈ L, then by the same argument we can show that C = L ∪ Q, which is a
contradiction. Similarly, we get a contradiction assuming p6 6∈ Q, or p7 6∈ Q. Thus we deduce that
p6, p7, p8 ∈ Q. This implies that Q contains 8 points of the points, which contradicts our proof earlier
that no conic contains seven of the points. So the original hypotheses on E were inconsistent. Hence if
E contains p1, . . . , p8, then R must be a linear combination of P and Q, such that E also contains p9.

3.14 Since D = L1 ∪M2 ∪ L3, D meets C in the points where each of the lines in D meets C, which are
p, q,−(p+q) for L1, p0, q+r,−(q+r) for M2 and r, p+q,−((p+q)+r) for L3. So D meets C in the points
p0, p, q, r, p+q, q+r,−(p+q),−(q+r),−((p+q)+r), which we label as p1, . . . , p9 respectively. Similarly,
we can check that E meets C in the points p0, p, q, r, p+q, q+r,−(p+q),−(q+r),−(p+(q+r)), which
are p1, . . . , p8 and a ninth point which we label p′9. We apply the result from Exercise 3.13 as follows.
Since C and D meet in exactly the nine points p1, . . . , p9, and E contains p1, . . . , p8, by Exercise 3.13,
E also contains p9. Moreover, since E meets C in exactly nine points, hence p′9 = p9, which implies
(p+ q) + r = p+ (q + r).

3.16 Let p be a point of inflection of a nonsingular cubic curve C in P2. Then by Remark 3.35, there is a
projective transformation taking p to [0, 1, 0] and taking C to a curve y2z = x(x− z)(x− λz) for some
λ ∈ C−{0, 1}. Let f = y2z−x(x−z)(x−λz). To compute the tangent lines to C which pass through p,
we first solve for the points [a, b, c] where ∂f

∂x (a, b, c)·0+ ∂f
∂y (a, b, c)·1+ ∂f

∂z (a, b, c)·0 = ∂f
∂y (a, b, c) = 0. This

implies 2yz = 0. If y = 0, then x = 0, x = z or x = λz, which gives us the points [0, 0, 1], [1, 0, 1], [λ, 0, 1]
respectively. If z = 0, then x = 0 and we have the point [0, 1, 0]. Hence there are exactly four tangent
lines to C which pass through p, which are the four tangent lines to C at these points.
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