Math 255 Homework 2

5 Feb, 2019

3.3 A conic is a curve of the form $a_1x^2 + a_2xy + a_3xz + a_4y^2 + a_5yz + a_6z^2$, and has 6 coefficients, thus the space of conics is 5-dimensional. Given 5 points in \mathbb{P}^2 , each point specifies a linear constraint on the coefficients, and since there are 5 dimensions, we can solve the system of equations to find a conic containing the 5 points.

Let C be a projective curve of degree 4 in \mathbb{P}^2 with four singular points. Let D be a conic containing the 4 singular points and another point of C. By Bézout's theorem, if the two curves have no common component, then they have 8 points of intersection counting multiplicities. Since the 4 singular points have multiplicity greater than 1, and C and D have an additional point of intersection, hence the sum of the intersection multiplicities is at least 9. Thus C and D must have a common component, which implies C is reducible.

3.8 Let C be a projective curve in \mathbb{P}^2 defined by a homogeneous polynomial P, let α be a linear transformation, and let $Q = P \circ \alpha^{-1}$. We label the coordinates on P by x_1, x_2, x_3 and the coordinates on Q by v_1, v_2, v_3 , such that $\alpha^{-1}(v_1, v_2, v_3) = (x_1, x_2, x_3)$. To compute the derivative of Q at some $v \in \mathbb{C}^3 - \{0\}$, we use the chain rule to get $\frac{\partial Q}{\partial v_i} = \frac{\partial P}{\partial x_1} \frac{\partial x_1}{\partial v_i} + \frac{\partial P}{\partial x_2} \frac{\partial x_2}{\partial v_i} + \frac{\partial P}{\partial x_3} \frac{\partial x_3}{\partial v_i}$, for i = 1, 2, 3. Since α^{-1} is a linear transformation, it is given by some matrix, and $\frac{\partial x_i}{\partial v_j}$ is the (i, j)-th entry of the matrix. So we get that the gradient of Q evaluated at v (as a column vector), is equal to the gradient of P evaluated at $\alpha^{-1}(v)$, multiplied on the left by the transpose of the matrix of α^{-1} .

Applying the chain rule again, we get that the matrix of second derivatives of Q at v is the matrix of second derivatives of P at $\alpha^{-1}(v)$, multiplied on the right and the left by the matrix of α^{-1} and its transpose respectively. By taking determinants, we get the desired identity on the Hessians.

This implies that if the Hessian of a polynomial vanishes at a point, it also vanishes after a linear transformation, so the definition of an inflection point is invariant under projective transformations.

3.11 By Corollary 3.34, there is a projective transformation taking p to [0, 1, 0] and taking C to a curve of the form $y^2 z = x(x-z)(x-\lambda z)$, where $\lambda \in \mathbb{C}$, $\lambda \neq 0, 1$. We compose this with the transformation $x \mapsto \frac{\lambda+1}{3}z, y \mapsto \frac{1}{2}y$, to get the equation

$$y^{2}z = 4x^{3} - \frac{4}{3}(\lambda^{2} - \lambda + 1)xz^{2} - 4\left(\frac{2}{27}\lambda^{3} - \frac{1}{9}\lambda^{2} - \frac{1}{9}\lambda + \frac{2}{27}\right)z^{3}$$
(1)

So we have $g_2 = \frac{4}{3}(\lambda^2 - \lambda + 1)$ and $g_3 = 4(\frac{2}{27}\lambda^3 - \frac{1}{9}\lambda^2 - \frac{1}{9}\lambda + \frac{2}{27})$. Then $g_2^3 - 27(g_3)^2 = 16\lambda^2(\lambda - 1)^2 \neq 0$ since $\lambda \neq 0, 1$.

3.13 Suppose that C and D meet in exactly 9 points p_1, \ldots, p_9 . Suppose that some line L in \mathbb{P}^2 contains 4 of these points. By Bézout's theorem, a line and a cubic and only meet in 3 points unless they have a common component, thus C must contain L as a component. Applying the same argument to D, this implies that C and D both contain L, and so cannot meet in exactly 9 points. Hence this is a contradiction, and no line in \mathbb{P}^2 can contain four of the points.

Similarly, a conic can only meet a cubic in 6 points unless they have a common component. So if a conic meets C in 7 points, it must have a common component with C, and similarly for D. Moreover, this must be the same component, so C and D cannot meet in exactly 9 points. Hence no conic contains seven of the points.

From exercise 3.3, there is at least one conic containing p_1, \ldots, p_5 . Moreover, since no line contains four of these, this conic Q is unique.

Suppose that E contains p_1, \ldots, p_8 and that R is not a linear combination of P and Q. Let q, r be distinct points in \mathbb{P}^2 . Then we can find a curve C defined by $\lambda P + \mu Q + \nu R = 0$, with $\lambda, \mu, \nu \in \mathbb{C}$, which passes through p_1, \ldots, p_8, q, r . We do this by substituting q, r into the equation to get two linear equations in λ, μ, ν , which we can solve for a solution with nonzero λ, μ, ν .

Suppose that p_8 lies in the line L through p_6, p_7 , and choose $q \in L$, $r \notin L \cup Q$. Then C contains the four points $p_6, p_7, p_8, q \in L$, so by Bézout's theorem, C contains L as a component. So C is the union of L and a conic, which must be Q since Q is the unique conic containing p_1, \ldots, p_5 . This is a contradiction since $r \notin L \cup Q$, so p_6, p_7, p_8 cannot lie on a line. Applying the same argument to the other points, we deduce that no three of p_1, \ldots, p_8 lie on a line.

If $p_8 \notin Q$, and $q, r \in L$, then by the same argument we can show that $C = L \cup Q$, which is a contradiction. Similarly, we get a contradiction assuming $p_6 \notin Q$, or $p_7 \notin Q$. Thus we deduce that $p_6, p_7, p_8 \in Q$. This implies that Q contains 8 points of the points, which contradicts our proof earlier that no conic contains seven of the points. So the original hypotheses on E were inconsistent. Hence if E contains p_1, \ldots, p_8 , then R must be a linear combination of P and Q, such that E also contains p_9 .

- 3.14 Since $D = L_1 \cup M_2 \cup L_3$, D meets C in the points where each of the lines in D meets C, which are p, q, -(p+q) for $L_1, p_0, q+r, -(q+r)$ for M_2 and r, p+q, -((p+q)+r) for L_3 . So D meets C in the points $p_0, p, q, r, p+q, q+r, -(p+q), -(q+r), -((p+q)+r)$, which we label as p_1, \ldots, p_9 respectively. Similarly, we can check that E meets C in the points $p_0, p, q, r, p+q, q+r, -(p+q), -(q+r), -((p+q)+r)$, which we label p_1, \ldots, p_9 respectively. Similarly, are p_1, \ldots, p_8 and a ninth point which we label p'_9 . We apply the result from Exercise 3.13 as follows. Since C and D meet in exactly the nine points p_1, \ldots, p_9 , and E contains p_1, \ldots, p_8 , by Exercise 3.13, E also contains p_9 . Moreover, since E meets C in exactly nine points, hence $p'_9 = p_9$, which implies (p+q)+r = p + (q+r).
- 3.16 Let p be a point of inflection of a nonsingular cubic curve C in \mathbb{P}^2 . Then by Remark 3.35, there is a projective transformation taking p to [0, 1, 0] and taking C to a curve $y^2 z = x(x-z)(x-\lambda z)$ for some $\lambda \in \mathbb{C} \{0, 1\}$. Let $f = y^2 z x(x-z)(x-\lambda z)$. To compute the tangent lines to C which pass through p, we first solve for the points [a, b, c] where $\frac{\partial f}{\partial x}(a, b, c) \cdot 0 + \frac{\partial f}{\partial y}(a, b, c) \cdot 1 + \frac{\partial f}{\partial z}(a, b, c) \cdot 0 = \frac{\partial f}{\partial y}(a, b, c) = 0$. This implies 2yz = 0. If y = 0, then x = 0, x = z or $x = \lambda z$, which gives us the points [0, 0, 1], [1, 0, 1], $[\lambda, 0, 1]$ respectively. If z = 0, then x = 0 and we have the point [0, 1, 0]. Hence there are exactly four tangent lines to C which pass through p, which are the four tangent lines to C at these points.