Math 255: Algebraic Curves

Bernd Sturmfels, UC Berkeley, Fall 2011 Homework # 2, due Tuesday, September 13

- 1. [Kirwan 3.1] Let C and D be curves in \mathbb{P}^2 with no common components. Show that $\operatorname{Sing}(C \cup D) = \operatorname{Sing}(C) \cup \operatorname{Sing}(D) \cup (C \cap D)$. Deduce that every reduced curve in \mathbb{P}^2 has only finitely many singular points.
- 2. [Kirwan 3.3] Show that any five points in \mathbb{P}^2 lie on a conic. Deduce that every curve of degree 4 in \mathbb{P}^2 with 4 singular points is reducible.
- 3. [Kirwan 3.6] State and prove Pappus' Theorem.
- 4. [Kirwan 3.13] State and prove the Cayley-Bacharach Theorem.
- 5. [Kirwan 3.16] Show that if p is an inflection point of a nonsingular cubic curve C in \mathbb{P}^2 then there are exactly four tangent lines to C which pass through p.
- 6. [Kirwan 4.1] Let C and D be nonsingular curves of degrees n and m in \mathbb{P}^2 . Show that if C is homeomorphic to D then either m = n or $\{n, m\} = \{1, 2\}$.
- 7. [Kirwan 4.4] Show that the map $(s:t:0) \mapsto (st^3:(s+t)^4:t^4)$ defines a homeomorphism from the line $\{z=0\}$ to a quartic curve in \mathbb{P}^2 . Why does this not contradict the statement in the previous exercise?