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1 Introduction

In [2], Comon et al. give an algorithm for decomposing a symmetric tensor

into a sum of symmetric rank 1 tensors, provided that some rank condi-
tions hold. This type of problem is very relevant to the field of algebraic

statistics: in this context, the space of symmetric rank 1 tensors corresponds
to the model of independent, identically distributed random variables, and

the space of symmetric tensors of non-negative rank at most k corresponds
to the k-fold mixture of this model. In this paper, we consider a tropical

version of this problem.
Specifically, we investigate the notion of tropical symmetric rank of a

symmetric tensor X , defined as the smallest number of symmetric tensors

of tropical rank 1 whose sum is X . (A symmetric tensor has tropical rank 1
if can be written as a tropical tensor product of a single vector). We show

that the tensors of tropical symmetric rank at most k are precisely the kth

tropical secant variety of the linear space of symmetric tensors of rank 1.

We then to consider the more general setting of tropical secant varieties of
linear spaces. In Section 3, we describe a theorem due to Develin character-

izing these secant varieties in terms of polytopes [3]. In Section 4, we use
this characterization to give an algorithm which, given a point s ∈ R

m and

a linear subspace V ⊆ R
m, returns a minimum length tropical decomposi-

tion of s into vectors lying in V or indicates that no finite decomposition
exists. Finally, equipped with our polytopal characterization of tropical se-

cant varieties, we specialize to the case of symmetric tropical rank 1 tensors
in Section 5. We characterize those tensors of finite rank, and prove some

bounds on the maximum rank of a tensor of order d and size n. The matlab
code implementing this algorithm is included in Section 6.
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2 Symmetric tensors and tropical rank

Our setting is the max-plus algebra (R ∪ {−∞},⊕,⊗), where

x ⊕ y = max{x, y} and x ⊗ y = x + y, for all x, y ∈ R.

The element −∞ is the additive identity, and 0 is the multiplicative identity.

The operations ⊕ and ⊗ give a semiring structure on R ∪ {−∞} which we
call the tropical semiring.

A tensor of order d and size n is an array X = (x)i1···id of real numbers,

where 1 ≤ i1, . . . , id ≤ n. We say that X is symmetric if it is invariant under
permuting indices, that is, if

xi1···id = xiσ1···iσd

for all σ ∈ Sd. Thus, a symmetric tensor of order 2 is a symmetric matrix,
with xij = xji for all indices i, j. We note that the space of symmetric

tensors of fixed order d and size n is a linear space; one may check that its
dimension is

(
n+d−1

d

)
.

A tensor has tropical rank 1 if it can be decomposed as a tropical outer
product of d vectors in R

n, that is, if there exist vectors z1, . . . , zd ∈ R
n

such that for all choices of indices i1, . . . , id, we have

xi1···id = z1
i1
⊗ · · · ⊗ zd

id
.

We emphasize that ⊗ denotes tropical multiplication of scalars, that is,

addition in the usual sense.
For example, the matrix

(
2 6

3 7

)

has tropical rank 1 since it is the tropical outer product of (λ, 1 + λ) and
(2 − λ, 6− λ) for any scalar λ.

One can check that the following averaging condition characterizes sym-
metric, tropical rank 1 tensors.

Proposition 2.1. Let X be a tensor of order d and size n. Then the
following are equivalent:

1. X is symmetric and has tropical rank 1,

2. For all choices of indices i1, . . . , id, we have

xi1···id =
xi1···i1 + · · ·+ xid···id

d
,

and
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3. X can be written as a tropical outer product of a vector v ∈ R
n with

itself d times.

Thus the space of symmetric tropical rank 1 tensors is an n- dimensional
linear subspace of the

(
n+d−1

d

)
-dimensional space of symmetric tensors.

Given two tensors X and X ′ of the same order and size, we may add
them tropically by taking the classical maximum in each coordinate. For

example,

(
1 2

2 3

)

⊕

(
0 3

3 6

)

=

(
1 3

3 6

)

. (1)

Definition. A symmetric tensor X has tropical symmetric rank k if X is the

tropical sum of k symmetric tropical rank 1 tensors but is not the tropical
sum of k−1 such tensors. If X does not have tropical symmetric rank k for
any integer k then we say that its rank is infinite.

For example, the two tensors on the left hand side of Equation 1 have

tropical symmetric rank 1. Since the tensor on the right hand side does not
have rank 1 by Proposition 2.1, Equation 1 shows that it has rank 2.

Note that, unlike the classical case, not all symmetric tensors have finite
rank. We will characterize symmetric tensors of finite rank in Propositions

5.2 and 5.3. For a second example, illustrating yet another difference be-
tween the classical setting and the tropical setting, consider the tropical
equation

(
0 1
2 3

)

⊕

(
0 2
1 3

)

=

(
0 2
2 3

)

.

Since the matrices on the left have tropical rank 1, the matrix on the right
has tropical rank at most 2. However, Proposition 5.2 shows that its tropical

symmetric rank is infinite. This is in marked contrast to the classical situ-
ation, where rank and symmetric rank coincide for all symmetric matrices
and are conjectured to coincide for all symmetric tensors, as discussed in [1].

In the rest of this paper, rank will always mean tropical symmetric rank.

3 Tropical secant varieties of linear spaces

We may generalize the above setting as follows.
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Definition. Let L be a linear subspace of R
m. Then we define the kth

tropical secant variety of L, denoted Seck(L), to be the set of points

{x ∈ R
m | x = y1 ⊕ · · · ⊕ yk for some y1, . . . , yk ∈ L}

where ⊕ denotes coordinate-wise tropical addition.

Thus Sec1(L) = L and Sec1(L) ⊆ Sec2(L) ⊆ · · · . Linear subspaces

are of particular interest since they correspond to tropicalizations of toric

varieties. Note that if L is the n- dimensional linear subspace of R
(n+d−1

d )

corresponding to symmetric tropical rank 1 matrices, then Seck(L) corre-
sponds precisely to those symmetric matrices of rank at most k.

The following theorem, due to Develin, gives a polytopal characterization
of membership in the kth tropical secant variety of a linear space. We let 1

denote the vector (1, . . . , 1).

Theorem 3.1. [3] Let V be a linear subspace of R
m containing 1, and

let s = (s1, . . . , sm) be a vector in R
m. Let V be spanned by the vectors

v1, . . . , vn, 1, and let WV be the point configuration w1, . . . , wm whose m

points are the m columns of the matrix






v11 · · · v1m

...
. . .

...
vn1 · · · vnm






whose rows are v1, . . . , vn. Let w′
i ∈ R

n+1 be the vector (wi, si), and let
C denote the convex polytope in R

n+1 formed by taking the convex hull of

w′
1, . . . , w

′
m.

Then s lies in the kth tropical secant variety of V if and only if there

exists a set of at most k facets of the lower envelope of C which meet each
w′

i.

We note that choosing a different generating set for V would only change
the point configuration WV by an affine isomorphism, so that the conclusion

of the theorem does indeed hold for any choice of v1, . . . , vn.

4 A an algorithm for computing tropical secant

varieties

Theorem 3.1 provides a criterion for membership in the kth tropical secant

variety of a linear subspace V . We can turn this criterion into an algorithm
as follows.
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• Input: A list of n vectors v1, . . . , vn ∈ R
m, such that V = span{v1, . . . , vn, 1},

and a vector s ∈ R
m.

• Output: A list of vectors y1, . . . , yk ∈ V such that s = y1 ⊕ · · · ⊕ yk

and s has no such decomposition with fewer than k terms; or −1 if s

has no finite decomposition as a tropical sum of vectors in V .

1. Compute the lower facets of the convex hull C of the points w′
1, . . . , w

′
m

as in Theorem 3.1, represented as a list of point-facet incidences.

2. If some point w′
i is incident to no facets, return -1.

3. Else, find a smallest set of facets meeting all w′
i’s. Represent these

facets as a list f1, . . . , fk of affine functionals on R
n; that is fi :

(x1, . . . , xn) 7→ ai1x1 + · · ·+ ainxn + bi for real numbers aij , bi.

4. For i = 1, . . . , k, let yi = (fi(w1), . . . , fi(wm)) ∈ R
m. Return the list

y1, . . . , yk.

We claim, and [3] proves, that y1 ⊕ · · · ⊕ yk = s, and furthermore, that
this decomposition is of minimum length.

Some remarks on this algorithm are in order. In Step 1, we can use the
matlab command convhulln, which returns a list of point- facet incidences
of the convex hull C of n given points. Since we are only interested in the

facets in the lower envelope of C, we add a “fake” point (0, . . . , 0,∞) to our
list and then ignore all facets in the output that are incident to this point.

In Step 3, we compute a smallest set of facets meeting all w′
i’s. This

task is no harder than computing a minimum dominating set in a bipartite

graph. We make this precise as follows.

Definition. Given a graph G = (V, E), we say that a vertex v is covered by

a vertex w if v = w or {v, w} ∈ E. A dominating set in a graph G = (V, E)
is a subset D of V such that every vertex v ∈ V is covered by some vertex

in D.

Definition. A bipartite graph is a graph G = (V, E) whose vertex set can

be partitioned into subsets A and B such that every edge {v, w} ∈ E has
precisely one of v or w in A. We write G = (A, B, E) in this case.

Suppose we have a list of incidences between a set of facets F and a
set of points X of a polytope. We wish to compute a smallest set of facets

meeting all points in X . Let us construct a bipartite graph G = (A, B, E)
as follows. We let A = F ∪ {a1, a2} and B = X ∪ {b}. For each f ∈ F
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and x ∈ X , we add an edge {f, x} if and only if x is incident to f in the

polytope. For each f ∈ F , we add edge {f, b}. Finally, we add edges {a1, b}
and {a2, b}.

Proposition 4.1. Let F be a set of facets and X be a set of points of a

polytope, and let G = (A, B, E) be the bipartite graph constructed above. Let
D be any minimum size dominating set of G. For each x ∈ D ∩ X , let fx

be any neighbor of x, so fx ∈ F . Then

F ′ = (D ∩ F ) ∪ {fx | x ∈ D ∩ X}

is a smallest set of facets which meet all vertices in X .

Proof. First, we claim b ∈ D. If not, then we must have {a1, a2} ⊆ D, but
then (D ∪ {b}) \ {a1, a2} would be a dominating set that is smaller than D,
contradiction. So b ∈ D, and therefore a1, a2 6∈ D. Now let

D′ = (D ∩ A) ∪ {fx | x ∈ D ∩ X} ∪ {b}.

We claim D′ is a dominating set of G. Indeed, every vertex in G is covered
by this set: the vertices in X \D are covered by D∩A; the vertices in X ∩D

are covered by {fx | x ∈ D ∩X}; and the vertices in A∪ {b} are covered by
b.

Next, writing
D = (D ∩ A) ∪ (D ∩ X) ∪ {b}

and noting that |{fx | x ∈ D ∩ X}| ≤ |D ∩ X |, we have |D′| ≤ |D|, so D′ is

a dominating set of G of minimum size.
Finally, noting that F ′ = D′ \ {b}, we have that F ′ covers X ; that is,

F ′ is a set of facets meeting all points in X in the polytope. Finally, if
some other subset F ′′ of F meets all points in X , then one may check that

F ′′ ∪{b} is a dominating set of G. So |F ′′∪{b}| ≥ |F ′ ∪{b}| and |F ′′| ≥ |F ′|
as desired.

Thus, computing a smallest subset of facets F meeting all points in X is
no harder than computing a minimum dominating set in a bipartite graph

on |F | + |X |+ 3 vertices.
Unfortunately, computing a minimum dominating set, even for a bipar-

tite graph, is an NP-hard problem in general. A future direction for research
would be to determine whether the bipartite graph constructed above has

any nice structure arising from the geometry of the polytope which one could
exploit to obtain a faster algorithm.
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The code implementing this algorithm, written in matlab, is included in

the appendix to this paper. It is not yet optimized to run quickly. A future
project would be to improve the running time of this code using the ideas

described above.

5 An application to symmetric tensors of tropical

rank 1

We now discuss the implications of Theorem 3.1 in the context of the linear
space of symmetric tropical rank 1 tensors.

Proposition 5.1. Let S be the n-dimensional linear space of symmetric
tropical rank 1 tensors of order d and size n. Then the point configuration

WV associated to V is a d-fold subdivision of the simplex ∆n−1, given by

WV = {(w1, . . . , wn−1) ∈ R
n−1 | wi ∈ {0, . . . , d},

n−1∑

i=1

wi ≤ d}.

Proof. We regard a symmetric tensor X of order d and size n as a row

vector in R
(n+d−1

d ) whose coordinates are indexed by nondecreasing sequences
(i1, . . . , id) of indices where 1 ≤ i1 ≤ · · · ≤ id ≤ n. For each j with 1 ≤ j ≤ n,

let vj denote the row vector in R
(n+d−1

d ) whose value in coordinate (i1, . . . , id)
equals the number of times that j appears amongst this sequence. Note that

the vi’s are linearly independent, since the projection to the n coordinates
corresponding to constant sequences (i, . . . , i) are, and since S has dimension
n, the vectors v1, . . . , vn must be a basis for S. Moreover, since

n∑

j=1

vj = d · 1,

we have that {v1, . . . , vn−1, 1} spans S. Finally, we note that the columns

of the matrix whose rows are v1, . . . , vn−1 are precisely the set of points
described in the proposition. Indeed, the vector in R

n−1 associated to the

column (i1, . . . , id) of this matrix has as its jth coordinate the number of
times j appears in the sequence (i1, . . . , id).

This geometric interpretation of symmetric rank 1 tensors allows us to
apply Theorem 3.1 to describe their kth secant varieties, that is, symmetric

tensors of rank at most k. We start by characterizing symmetric matrices
of finite rank.
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Proposition 5.2. Let X be a symmetric n × n matrix. Then X has finite

tropical symmetric rank if and only if

xij ≤
xii + xjj

2
(2)

for all i, j with 1 ≤ i, j ≤ n.

Proof. Suppose X has finite rank, so that X is the coordinate-wise maximum

of Y 1, . . . , Y m, where each Y i is a symmetric tropical rank 1 matrix. Suppose
for a contradiction that there exist indices i, j such that (2) does not hold.

Since xij = yk
ij for some k, we have

xii + xjj

2
< xij = yk

ij =
yk

ii + yk
jj

2
,

and hence

xii < yk
ii or xjj < yk

jj ,

contradiction.

Conversely, if (2) is satisfied for all i and j, then we can give an explicit
decomposition of X into symmetric rank 1 matrices. Note that the size of
this particular decomposition will in general be far from optimal. For each

k with 1 ≤ k ≤ n, let Y kk be the matrix whose (k, k) entry is xkk and whose
remaining entries are all −∞. For each i, j with 1 ≤ i < j ≤ n, pick any s

and t subject to the conditions

s ≤ xii, t ≤ xjj, and
s + t

2
= xij.

That such s and t exist is guaranteed by (2). Now let Y ij be the matrix
whose restriction to the 2 × 2 submatrix of rows and columns {i.j} is

(
s xij

xij t

)

and whose remaining entries are all −∞.
Then it is straightforward to check, using Proposition 2.1, that for each

i, j with 1 ≤ i ≤ j ≤ n, the matrix Y ij has tropical rank 1, and furthermore

that
X =

⊕

1≤i≤j≤n

Y ij

as desired.
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One could alternatively view Proposition 5.2 through the lens of Theorem

3.1. In this way, one may check that in the point configuration corresponding
to symmetric n × n matrices, the point associated to xij is the midpoint of

the points associated to xii and xjj, and furthermore that these are the only
instances in which one point lies in the convex hull of others. Then for a

given symmetric matrix, which we regard as a height vector on the point
configuration, we need only require that the height at xij is at most the

average of the heights at xii and xjj, and so Proposition 5.2 follows.
Unfortunately, for a general tensor of order d, the condition of having

finite rank does not have quite such a nice description. In this case, there
are points in the corresponding configuration which lie in the convex hull of
full-dimensional regions of our subdivision. The following characterization

of finite rank symmetric tensors follows immediately from Theorem 3.1 and
Proposition 5.1, however.

Proposition 5.3. Let X be a symmetric tensor of order d and size n. Let

WV be the set

{(w1, . . . , wn−1) ∈ R
n−1 | wi ∈ {0, . . . , d},

n−1∑

i=1

wi ≤ d} ⊂ R
n−1,

as in Proposition 5.1.

Then X has finite tropical symmetric rank if and only if, for every
w, z1, . . . , zn ∈ WV such that

w = λ1z
1 + · · ·λnzn

for some scalars λj satisfying λj ≥ 0 and
∑

λj = 1, the inequality

x1 · · ·1
︸ ︷︷ ︸

w1

2 · · ·2
︸ ︷︷ ︸

w2

···n · · ·n
︸ ︷︷ ︸
1−

P

wi

≤

n∑

j=1

λjx1 · · ·1
︸ ︷︷ ︸

zj
1

2 · · ·2
︸ ︷︷ ︸

zj
2

···n · · ·n
︸ ︷︷ ︸

1−
P

zj
i

holds.

In this regard, then, the tropical setting is quite different from the clas-
sical setting: it is by no means the case that every symmetric tensor has

finite rank.
We can ask, however, for the maximum finite rank attained by a sym-

metric tensor of order d and size n. We first derive a naive upper bound
from Theorem 3.1.
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Proposition 5.4. A symmetric tensor of order d and size n either has

infinite rank or has rank at most
(
n+d−1

d

)
− n + 1.

Proof. A regular subdivision of
(
n+d−1

d

)
points in R

n−1 can have at most
(
n+d−1

d

)
− n + 1 regions. The result then follows from Theorem 3.1.

In some small cases, the rank of a symmetric matrix is bounded by its

size. We prove these cases below.

Proposition 5.5. A 2×2 symmetric matrix of finite rank has rank at most
2.

Proof. Let

X =

(
a b

b c

)

where since X has finite rank, we have b ≤ a+c
2

by Proposition 5.2. Then

(
a b

b c

)

=

(
a b

b 2b − a

)

⊕

(
−∞ −∞
−∞ c

)

is a tropical decomposition of X into two symmetric rank 1 tensors.

Proposition 5.6. A 3×3 symmetric matrix of finite rank has rank at most
3.

Proof. Let

X =





a b c

b d e

c e f





where since X has finite rank, we have

b ≤
a + d

2
, c ≤

a + f

2
, e ≤

d + f

2

by Proposition 5.2. Then one can check that





a b −∞

b 2b − a −∞
−∞ −∞ −∞



⊕





−∞ −∞ −∞

−∞ d e

−∞ e 2e − d



⊕





2c− f −∞ c

−∞ −∞ −∞
c −∞ f





is a decomposition of X into symmetric tensors of rank 1.

Proposition 5.7. A 4×4 symmetric matrix of finite rank has rank at most
4.
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Proof. Let

X =







x11 x12 x13 x14

x12 x22 x23 x24

x13 x23 x33 x34

x14 x24 x34 x44







be a symmetric matrix of finite rank. By Proposition 5.2, we have

xij ≤
xii + xjj

2
(3)

for each i, j. We use this fact repeatedly in the following argument.

We first claim that

x23 + x11 ≥ x12 + x13 or x13 + x22 ≥ x12 + x23,

for if not, then adding the inequalities yields

x11 + x22 < 2x12,

contradicting (3). Then, by permuting indices 1 and 2 if necessary, we may
assume that

x23 + x11 ≥ x12 + x13. (4)

Now, suppose that

x24 + x11 ≥ x12 + x14 and x34 + x11 ≥ x13 + x14. (5)

Then let

Y1 =







x11 x12 x13 x14

x12 2x12 − x11 x12 + x13 − x11 x12 + x14 − x11

x13 x12 + x13 − x11 2x13 − x11 x13 + x14 − x11

x14 x12 + x14 − x11 x13 + x14 − x11 2x14 − x11







Y2 =







−∞ −∞ −∞ −∞

−∞ x22 x23 −∞
−∞ x23 2x23 − x22 −∞

−∞ −∞ −∞ −∞







Y3 =







−∞ −∞ −∞ −∞
−∞ −∞ −∞ −∞

−∞ −∞ x33 x34

−∞ −∞ x34 2x34 − x33







Y4 =







−∞ −∞ −∞ −∞

−∞ 2x24 − x44 −∞ x24

−∞ −∞ −∞ −∞

−∞ x24 −∞ x44






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Then we can check that X = Y1 ⊕ Y2 ⊕ Y3 ⊕ Y4 and the Yi’s have rank 1.

So we may assume that not both inequalities in (5) hold. By permuting
indices 2 and 3, we may assume that

x24 + x11 < x12 + x14. (6)

Then we claim that

x12 + x44 ≥ x14 + x24, (7)

for otherwise (6) yields x11 + x44 < 2x14, contradicting (3). Now let

Y1 =







x11 x12 x13 −∞
x12 2x12 − x11 x12 + x13 − x11 −∞

x13 x12 + x13 − x11 2x13 − x11 −∞
−∞ −∞ −∞ −∞







Y2 =







2x14 − x44 x14 + x24 − x44 −∞ x14

x14 + x24 − x44 2x24 − x44 −∞ x24

−∞ −∞ −∞ −∞
x14 x24 −∞ x44







Y3 =







−∞ −∞ −∞ −∞

−∞ −∞ −∞ −∞
−∞ −∞ x33 x34

−∞ −∞ x34 2x34 − x33







Y4 =







−∞ −∞ −∞ −∞
−∞ x22 x23 −∞

−∞ x23 2x23 − x22 −∞
−∞ −∞ −∞ −∞







Then one may check, using (3), (4), and (7), that X = Y1 ⊕Y2 ⊕Y3 ⊕Y4

and the Yi’s have rank 1.

Observation. It is not true, however, that every 5 × 5 symmetric matrix of
finite rank has rank at most 5. For example, we claim that the matrix

X =









0 −4 −16 −16 −2

−4 0 −4 −1 −8
−16 −4 0 −8 −1

−16 −1 −8 0 −4
−2 −8 −1 −4 0








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has tropical symmetric rank 6. We let

A = [2,0,0,0,0,1,1,1,1,0,0,0,0,0,0;

0,2,0,0,0,1,0,0,0,1,1,1,0,0,0;

0,0,2,0,0,0,1,0,0,1,0,0,1,1,0;

0,0,0,2,0,0,0,1,0,0,1,0,1,0,1;

1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]

and

x = [0,0,0,0,0,-4,-16,-16,-2,-4,-1,-8,-8,-1,-4]

and run tsv(A,x) in matlab, the code for which is given in the appendix
to this paper, to obtain the output

facets =

4 0 -12 -12 -8

2 -4 -14 -14 -4

4 8 -4 -4 -16

-4 8 4 4 -16

-7 8 1 7 -16

-12 0 4 -4 -8

-15 -6 1 -7 -2

-9 6 -1 7 -14

-12 0 -4 4 -8

-2 -8 -14 -14 0

-12 -8 -4 -4 0

-15 -8 -1 -7 0

incidences =

1 6 7 8 12 0 0 0 0 0

0 0 0 0 0

1 7 8 9 12 0 0 0 0 0

0 0 0 0 0

2 6 7 8 12 0 0 0 0 0

0 0 0 0 0

2 7 8 10 12 13 0 0 0 0

0 0 0 0 0
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2 8 11 12 13 0 0 0 0 0

0 0 0 0 0

3 7 10 12 13 0 0 0 0 0

0 0 0 0 0

3 7 12 13 14 0 0 0 0 0

0 0 0 0 0

4 8 11 12 13 0 0 0 0 0

0 0 0 0 0

4 8 12 13 15 0 0 0 0 0

0 0 0 0 0

5 7 8 9 12 0 0 0 0 0

0 0 0 0 0

5 7 8 12 13 15 0 0 0 0

0 0 0 0 0

5 7 12 13 14 0 0 0 0 0

0 0 0 0 0

ans =

0 -8 -32 -32 -8 -4 -16 -16 -4 -20

-20 -8 -32 -20 -20

0 -12 -32 -32 -4 -6 -16 -16 -2 -22

-22 -8 -32 -18 -18

-24 0 -8 -8 -16 -12 -16 -16 -20 -4

-4 -8 -8 -12 -12

-32 -14 0 -16 -2 -23 -16 -24 -17 -7

-15 -8 -8 -1 -9

-32 -2 -16 0 -14 -17 -24 -16 -23 -9

-1 -8 -8 -15 -7

-24 -16 -8 -8 0 -20 -16 -16 -12 -12

-12 -8 -8 -4 -4

to obtain a smallest decomposition of X into 6 rank 1 tensors, represented

by row vectors in the output. One may check that their tropical sum is x,
as desired.

The above discussion suggests the following question.

Question 1. Let n ≥ 5. What is the maximum finite rank of a symmetric
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n × n matrix?

6 Appendix: a matlab program for computing trop-

ical secant varieties

The following is our code for a matlab function tsv.m, which takes as input
a matrix M and a vector s whose length equals the number of columns of M .

We require that the rows of M are linearly independent and that the last row
of M is the vector 1. (These requirements are just artifacts of the particular

implementation and could be disposed of without too much difficulty).
The output is a list of facets of the lower envelope of the relevant poly-

tope, given as affine functionals; a list of vertex-facet incidences; and a
decomposition of s into a tropical sum of vectors in the rowspan of M , or
−1 if no such decomposition exists.

function ans = tsv (M,s);

[m,n]=size(M);

tuples = nchoosek( [1:n], m );

epsilon = .000000001; % Error tolerance

facets = zeros (1, m);

incidences = zeros (1, n);

nxt = 1;

for i = 1:size(tuples,1)

if (abs(det(M(:,tuples(i,:)))) > epsilon)

f =(M(:, tuples(i,:))’) \ (s(tuples(i,:)))’ ;

nxtv = 1;

goodf = 1;

vertices = zeros(1,n);

for j=1:n

temp = M(:,j)’*f - s(j);

if (temp >= -1*epsilon && temp <= epsilon)

vertices(nxtv) = j;

nxtv = nxtv + 1;

end

if (temp > epsilon)

goodf = 0;

15



end

end

if ((goodf == 1) )

flag = 1;

for i = 1:size(incidences,1)

if (vertices == incidences(i,:))

flag = 0;

end

end

if (flag == 1)

facets(nxt,:) = f;

incidences(nxt,:) = vertices;

nxt = nxt+1;

end

end

end

end

facets

incidences

for i=1:n

if (isempty(find(incidences==i)))

ans= -1;

return;

end

end

for k=1:size(incidences,1)

tuplesk = nchoosek([1:size(incidences,1)],k);

for j=1:size(tuplesk,1)

flag = 1;

for i=1:n

if (isempty(find(incidences(tuplesk(j,:),:)==i)))

flag = 0;

end

end

if (flag == 1)

ans = facets(tuplesk(j,:),:)*M;

return;
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end

end

end
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