Chapter 7: Likelihood Inference

Carlos Enrique Améndola Cerón

Introduction to Algebraic Statistics Course

May 25, 2018
Berlin

Maximum Likelihood Estimation

Recall from Chapter 5:

- (Def 5.3.5) Likelihood function for a model M_{Θ} with data $D: L(\theta \mid D)$ $\left(=p_{\theta}(D)\right.$ or $\left.f_{\theta}(D)\right)$.
- MLE $\hat{\theta}$ maximizes the (log-)likelihood function:

$$
\hat{\theta}=\underset{\theta \in \Theta}{\arg \max } \ell(\theta \mid D)
$$

- (Def 7.1.1) The score equations are obtained by setting the gradient of the log-likelihood to zero: $\frac{\partial}{\partial \theta_{i}} \ell(\theta \mid D)=0$ for $i=1, \ldots, d$.
- In the discrete case $p: \Theta \rightarrow \Delta_{r-1}$: for i.i.d. data $X^{(1)}, \ldots, X^{(n)}$ summarized by the vector of counts $u \in \mathbb{N}^{r}$, we have

$$
\ell(\theta \mid u)=\sum_{j=1}^{r} u_{j} \log p_{j}(\theta)
$$

The ML degree

- $\ell(\theta \mid u)=\sum_{j=1}^{r} u_{j} \log p_{j}(\theta)$, hence score equations are rational:

$$
\sum_{j=1}^{r} \frac{u_{j}}{p_{j}} \frac{\partial p_{j}}{\partial \theta_{i}}(\theta)=0 \quad i=1 \ldots, d
$$

Theorem (Thm 7.1.2, Def 7.1.4)

Let $p: \Theta \rightarrow \Delta_{r-1}$. For generic data, the number of (complex) solutions to the score equations is independent of u. We call this the ML degree of the parametric discrete statistical model $M_{\Theta} \subset \Delta_{r-1}$.

- ML degree measures the complexity of the ML estimation problem.
- ML degree is $1 \Longleftrightarrow$ the MLE is a rational function of the data.

Example (Twisted Cubic Model)

$$
p(\theta)=\left(s, s \theta, s \theta^{2}, s \theta^{3}\right) \subset \Delta_{3} \subset \mathbb{R}^{4} .
$$

where $s=\frac{1}{1+\theta+\theta^{2}+\theta^{3}}$. Sample size $n=u_{0}+u_{1}+u_{2}+u_{3}$. We have

$$
\begin{aligned}
& L(\theta \mid u)=s^{u_{0}}(s \theta)^{u_{1}}\left(s \theta^{2}\right)^{u_{2}}\left(s \theta^{3}\right)^{u_{3}} \\
&=s^{u_{0}+u_{1}+u_{2}+u_{3}} \theta^{u_{1}+2 u_{2}+3 u_{3}} \\
& \ell(\theta \mid u)=n \log s+\left(u_{1}+2 u_{2}+3 u_{3}\right) \log \theta
\end{aligned}
$$

The score equation is:

$$
0=\frac{\partial \ell}{\partial \theta}=-n s\left(1+2 \theta+3 \theta^{2}\right)+\left(u_{1}+2 u_{2}+3 u_{3}\right) \frac{1}{\theta}
$$

Thus $3 n \theta^{3}+2 n \theta^{2}+n \theta-\left(u_{1}+2 u_{2}+3 u_{3}\right) s^{-1}=0$ and we arrive at

$$
3\left(n-u_{3}\right) \theta^{3}+2\left(n-u_{2}\right) \theta^{2}+\left(n-u_{1}\right) \theta-\left(u_{1}+2 u_{2}+3 u_{3}\right)=0
$$

The ML degree is 3 .

- Recall (Prop 5.3.7) the Gaussian model log-likelihood $\ell(\mu, \Sigma \mid \bar{X}, S)$:

$$
-\frac{n}{2}(\log \operatorname{det} \Sigma+m \log 2 \pi)-\frac{n}{2} \operatorname{tr}\left(S \Sigma^{-1}\right)-\frac{n}{2}(\bar{X}-\mu)^{T} \Sigma^{-1}(\bar{X}-\mu) .
$$

Example (Prop 7.1.6)

Let $\Theta=\Theta_{1} \times I d_{m} \subset \mathbb{R}^{m} \times P D_{m}$ for a Gaussian statistical model. Then the maximum likelihood estimation for Θ is equivalent to the least-squares point on Θ_{1}. In this case, ML degree $=\#$ critical points of $\|\bar{X}-\mu\|_{2}^{2}$, known as the ED degree of Θ_{1}.

- (Prop 7.1.9) Let $\Theta=\mathbb{R}^{m} \times \Theta_{2} \subset \mathbb{R}^{m} \times P D_{m}$ for a Gaussian statistical model. Then ML estimation gives $\hat{\mu}=\bar{X}$ and reduces to maximizing $-\frac{n}{2} \log \operatorname{det} \Sigma-\frac{n}{2} \operatorname{tr}\left(S \Sigma^{-1}\right)$.

Example (Ex 7.1.11 Gaussian Marginal Independence)

Let $\Theta=\mathbb{R}^{m} \times \Theta_{2}$ where $\Theta_{2}=\left\{\Sigma \in P D_{4} \mid \sigma_{12}=\sigma_{21}=0, \sigma_{34}=\sigma_{43}=0\right\}$. The marginal independence constraints are $X_{1} \Perp X_{2}$ and $X_{3} \Perp X_{4}$. The ML degree is found to be 17 .

Likelihood Geometry

Definition (ML degree of a variety)

Let $V \subset \mathbb{P}^{r-1}$ be an irreducible projective variety over $\mathbb{C}, u \in \mathbb{N}^{r}$ and

$$
L_{u}(p)=\frac{p_{1}^{u_{1}} p_{2}^{L_{2}} \cdots p_{r}^{u_{r}}}{\left(p_{1}+\cdots+p_{r}\right)^{u_{1}+\cdots+u_{r}}} .
$$

ML degree of V is the number of (complex) critical points for generic u of $L_{u}(p)$ on $V_{\text {reg }} \backslash \mathcal{H}$, where $\mathcal{H}=\left\{p \in \mathbb{P}^{r-1}: p_{1} \cdots p_{r}\left(p_{1}+\cdots+p_{r}\right)=0\right\}$.

- If $I(V)=\left\langle f_{1}, f_{2}, \ldots, f_{k}\right\rangle$, use Lagrange multipliers to optimize L.
- (Thm 7.2.9) Huh (2013): the ML degree of a smooth very affine variety (of the form $V \cap\left(\mathbb{C}^{*}\right)^{r}$ where $V \subset \mathbb{C}^{r}$ variety) is $\pm \chi_{\text {top }}(\cdot)$.
- (Theorem 7.2.13) Huh (2014): Characterization of ML degree 1 varieties as A-discriminants [GKZ] (via Horn uniformization).

ML in Exponential Families

Theorem (Prop 7.3.7)

Exponential family $p_{\theta}(x)=h(x) \exp (\langle\theta, T(x)\rangle-A(\theta))$ with sufficient statistics $T(x), \log$-partition function $A(\theta)=\log \int_{\mathcal{X}} h(x) \exp (\langle\theta, T(x)\rangle)$ Then

$$
\frac{\partial}{\partial \theta_{i}} A(\theta)=\mathbb{E}_{\theta}\left[T_{i}(X)\right] \quad \text { and } \quad \frac{\partial^{2}}{\partial \theta_{i} \theta_{j}} A(\theta)=\operatorname{Cov}_{\theta}\left[T_{i}(X), T_{j}(X)\right]
$$

Corollary (Cor 7.3.8)

The likelihood function for an exponential family is strictly concave. The MLE (if it exists) is the unique solution to the equation

$$
\mathbb{E}_{\theta}[T(X)]=T(x)
$$

where x denotes the data vector.

Discrete and Gaussian exponential families revisited

Corollary (Birch's Theorem, Cor 7.3.9)

The MLE in the log-linear model $\mathcal{M}_{A, h}$ given the data u is the unique solution, if it exists, to the equations

$$
A u=n A \hat{p} \quad \text { and } \quad \hat{p} \in \mathcal{M}_{A, h}
$$

Inspires algorithms for computing MLE: Iterative Proportional Scaling (IPS)

Corollary (Cor 7.3.10)

Let $X^{(1)}, \ldots, X^{(n)} \in \mathbb{R}^{m}$ i.i.d. samples from the Gaussian exponential family parametrized by $(\mu, \Sigma) \in \mathbb{R}^{m} \times \mathcal{M}_{L^{-1}}$ (L linear space such that $L \cap P D_{m} \neq \emptyset$). The MLE is (\bar{X}, \hat{S}) where \hat{S} is the unique solution (if it exists) to the equations

$$
\pi(S)=\pi(\hat{S}) \quad \text { and } \quad \hat{S} \in \mathcal{M}_{L^{-1}}
$$

where π denotes the orthogonal projection onto L.

Exercise (cf. Ex. 7.2)

Let \mathcal{M} be the model of binomial random variables $\operatorname{Bin}(2, \theta)$:

$$
\mathcal{M}=\left\{\left((1-\theta)^{2}, 2 \theta(1-\theta), \theta^{2}\right) \in \Delta_{2} \mid \theta \in(0,1)\right\}
$$

- What is the ML degree of \mathcal{M} ?
- Compute the MLE $\hat{\theta}$ for the two data points $u=(8,6,5)$ and $v=(4,20,8)$. Interpret your results.

