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Introduction to Algebraic Statistics Course

May 25, 2018
Berlin



Maximum Likelihood Estimation

Recall from Chapter 5:

(Def 5.3.5) Likelihood function for a model MΘ with data D: L(θ|D)
(= pθ(D) or fθ(D)).

MLE θ̂ maximizes the (log-)likelihood function:

θ̂ = arg max
θ∈Θ

`(θ|D)

(Def 7.1.1) The score equations are obtained by setting the gradient
of the log-likelihood to zero: ∂

∂θi
`(θ|D) = 0 for i = 1, . . . , d .

In the discrete case p : Θ→ ∆r−1: for i.i.d. data X (1), . . . ,X (n)

summarized by the vector of counts u ∈ Nr , we have

`(θ|u) =
r∑

j=1

uj log pj(θ).



The ML degree

`(θ|u) =
∑r

j=1 uj log pj(θ) , hence score equations are rational:

r∑
j=1

uj
pj

∂pj
∂θi

(θ) = 0 i = 1 . . . , d .

Theorem (Thm 7.1.2, Def 7.1.4)

Let p : Θ→ ∆r−1. For generic data, the number of (complex) solutions to
the score equations is independent of u. We call this the ML degree of the
parametric discrete statistical model MΘ ⊂ ∆r−1.

ML degree measures the complexity of the ML estimation problem.

ML degree is 1 ⇐⇒ the MLE is a rational function of the data.



Example (Twisted Cubic Model)

p(θ) = (s, sθ, sθ2, sθ3) ⊂ ∆3 ⊂ R4.

where s = 1
1+θ+θ2+θ3 . Sample size n = u0 + u1 + u2 + u3. We have

L(θ|u) = su0(sθ)u1(sθ2)u2(sθ3)u3

= su0+u1+u2+u3θu1+2u2+3u3

`(θ|u) = n log s + (u1 + 2u2 + 3u3) log θ

The score equation is:

0 =
∂`

∂θ
= −ns(1 + 2θ + 3θ2) + (u1 + 2u2 + 3u3)

1

θ

Thus 3nθ3 + 2nθ2 + nθ − (u1 + 2u2 + 3u3)s−1 = 0 and we arrive at

3(n − u3)θ3 + 2(n − u2)θ2 + (n − u1)θ − (u1 + 2u2 + 3u3) = 0

The ML degree is 3.



Recall (Prop 5.3.7) the Gaussian model log-likelihood `(µ,Σ|X̄ , S):

−n

2
(log det Σ + m log 2π)− n

2
tr(SΣ−1)− n

2
(X̄ − µ)TΣ−1(X̄ − µ).

Example (Prop 7.1.6)

Let Θ = Θ1 × Idm ⊂ Rm × PDm for a Gaussian statistical model. Then
the maximum likelihood estimation for Θ is equivalent to the least-squares
point on Θ1. In this case, ML degree = # critical points of ||X̄ − µ||22 ,
known as the ED degree of Θ1.

(Prop 7.1.9) Let Θ = Rm ×Θ2 ⊂ Rm × PDm for a Gaussian
statistical model. Then ML estimation gives µ̂ = X̄ and reduces to
maximizing −n

2 log det Σ− n
2 tr(SΣ−1).

Example (Ex 7.1.11 Gaussian Marginal Independence)

Let Θ = Rm ×Θ2 where Θ2 = {Σ ∈ PD4|σ12 = σ21 = 0, σ34 = σ43 = 0}.
The marginal independence constraints are X1 ⊥⊥ X2 and X3 ⊥⊥ X4. The
ML degree is found to be 17.



Likelihood Geometry

Definition (ML degree of a variety)

Let V ⊂ Pr−1 be an irreducible projective variety over C, u ∈ Nr and

Lu(p) =
pu1

1 pu2
2 · · · purr

(p1 + · · ·+ pr )u1+···+ur
.

ML degree of V is the number of (complex) critical points for generic u of
Lu(p) on Vreg \ H, where H = {p ∈ Pr−1 : p1 · · · pr (p1 + · · ·+ pr ) = 0}.

If I (V ) = 〈f1, f2, . . . , fk〉, use Lagrange multipliers to optimize L.

(Thm 7.2.9) Huh (2013): the ML degree of a smooth very affine
variety (of the form V ∩ (C∗)r where V ⊂ Cr variety) is ±χtop(·).

(Theorem 7.2.13) Huh (2014): Characterization of ML degree 1
varieties as A-discriminants [GKZ] (via Horn uniformization).



ML in Exponential Families

Theorem (Prop 7.3.7)

Exponential family pθ(x) = h(x) exp(〈θ,T (x)〉 − A(θ)) with sufficient
statistics T (x), log-partition function A(θ) = log

∫
X h(x)exp(〈θ,T (x)〉)

Then

∂

∂θi
A(θ) = Eθ[Ti (X )] and

∂2

∂θiθj
A(θ) = Covθ[Ti (X ),Tj(X )].

Corollary (Cor 7.3.8)

The likelihood function for an exponential family is strictly concave. The
MLE (if it exists) is the unique solution to the equation

Eθ[T (X )] = T (x)

where x denotes the data vector.



Discrete and Gaussian exponential families revisited

Corollary (Birch’s Theorem, Cor 7.3.9)

The MLE in the log-linear modelMA,h given the data u is the unique
solution, if it exists, to the equations

Au = n Ap̂ and p̂ ∈MA,h

Inspires algorithms for computing MLE: Iterative Proportional Scaling (IPS)

Corollary (Cor 7.3.10)

Let X (1), . . . ,X (n) ∈ Rm i.i.d. samples from the Gaussian exponential
family parametrized by (µ,Σ) ∈ Rm ×ML−1 (L linear space such that
L ∩ PDm 6= ∅). The MLE is (X̄ , Ŝ) where Ŝ is the unique solution (if it
exists) to the equations

π(S) = π(Ŝ) and Ŝ ∈ML−1

where π denotes the orthogonal projection onto L.



Exercise (cf. Ex. 7.2)

Let M be the model of binomial random variables Bin(2, θ):

M = {((1− θ)2, 2θ(1− θ), θ2) ∈ ∆2 | θ ∈ (0, 1)}

What is the ML degree of M?

Compute the MLE θ̂ for the two data points u = (8, 6, 5) and
v = (4, 20, 8). Interpret your results.


