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Maximum Likelihood Estimation

Recall from Chapter 5:
o (Def 5.3.5) Likelihood function for a model Mg with data D: L(6|D)
(= po(D) or (D).
o MLE § maximizes the (log-)likelihood function:

0 = argmax £(0|D)
0cO

o (Def 7.1.1) The score equations are obtained by setting the gradient
of the log-likelihood to zero: %£(0|D) =0fori=1,...,d.

o In the discrete case p: © — A,_;: for i.i.d. data XM, ..., x("
summarized by the vector of counts u € N", we have

Olu) = ujlog pi(9).
j=1



The ML degree

o {(Olu) = >_[_; ujlog pj(9) , hence score equations are rational:

r

ujapj .
= ) = =1...,d.
;pjagi() 0 i ,

Theorem (Thm 7.1.2, Def 7.1.4)

Let p: © — A,_1. For generic data, the number of (complex) solutions to
the score equations is independent of u. We call this the ML degree of the
parametric discrete statistical model Mg C A,_1.

@ ML degree measures the complexity of the ML estimation problem.

@ ML degree is 1 <= the MLE is a rational function of the data.



Example (Twisted Cubic Model)
p(0) = (s,50,50%, s6%) C Az C R*.

where s = Sample size n = up + u1 + up + uz. We have

1
R
L(0|u) = s“0(s8)“1(s6%)"2(s63)4

— on+m+U2+U39U1+2U2+3U3
£(0|u) = nlog s + (u1 + 2up + 3u3) log O

The score equation is:

ot 1

0= — = —ns(1+20+36%) + (uy +2u> + 3u3)~

00 0
Thus 3n63 4 2n62 + n — (uy + 2uz + 3u3)s~! = 0 and we arrive at
3(n — u3)8® +2(n — w2)0% 4+ (n — 11)0 — (u1 + 2us + 3u3) =0

The ML degree is 3.




@ Recall (Prop 5.3.7) the Gaussian model log-likelihood £(y, ¥|X, S):
n

—g(logdetz + mlog2m) — gtr(SZ_l) >

(X =) "= (X = p).

Example (Prop 7.1.6)

Let © = ©1 x Id,, C R™ x PD,, for a Gaussian statistical model. Then
the maximum likelihood estimation for © is equivalent to the least-squares
point on O1. In this case, ML degree = # critical points of || X — u|[3 ,
known as the ED degree of ©;.

@ (Prop 7.1.9) Let © = R™ x ©, C R™ x PD,, for a Gaussian
statistical model. Then ML estimation gives i = X and reduces to
maximizing —J logdet ¥ — Jtr(S¥1).

Example (Ex 7.1.11 Gaussian Marginal Independence)

Let © = R™ x ©5 where ©, = {Z € PD4‘012 =091 = 0,034 = 043 = 0}
The marginal independence constraints are X; 1L X5 and X3 1L X;. The
ML degree is found to be 17.




Likelihood Geometry

Definition (ML degree of a variety)

Let V C P"! be an irreducible projective variety over C, u € N' and

uy U

_ Py Py’ Py
(pl + coo _|_ pr)ul+"'+ur :

Lu(p)

ML degree of V is the number of (complex) critical points for generic u of
Ly(p) on Vieg \ H, where H={p € P 1 :p---p(p1+ -+ p) = 0}. )

o If (V)= (f,f,...,fk), use Lagrange multipliers to optimize L.
e (Thm 7.2.9) Huh (2013): the ML degree of a smooth very affine
variety (of the form V N (C*)" where V C C" variety) is £xtop(-)-

@ (Theorem 7.2.13) Huh (2014): Characterization of ML degree 1
varieties as A-discriminants [GKZ] (via Horn uniformization).



ML in Exponential Families

Theorem (Prop 7.3.7)

Exponential family pg(x) = h(x)exp((0, T(x)) — A(#)) with sufficient
statistics T(x), log-partition function A(6) = log [ h(x)exp((0, T(x)))
Then

9 70) = Eo[Ti(X)] and 2
ag; N T L 96,6,

A(0) = Cove[Ti(X), Tj(X)].

\

Corollary (Cor 7.3.8)

The likelihood function for an exponential family is strictly concave. The
MLE (if it exists) is the unique solution to the equation

Eo[T(X)] = T(x)

where x denotes the data vector.

A\




Discrete and Gaussian exponential families revisited

Corollary (Birch's Theorem, Cor 7.3.9)

The MLE in the log-linear model M 4 j, given the data u is the unique
solution, if it exists, to the equations

Au=nAp and peMap

Inspires algorithms for computing MLE: Iterative Proportional Scaling (IPS)
Corollary (Cor 7.3.10)

Let X ... X(") € R™ jjd. samples from the Gaussian exponential
family parametrized by (p, %) € R™ x M (L linear space such that
LN PD,, #0). The MLE is (X,5) where S is the unique solution (if it
exists) to the equations

©(S)=n(8§) and Se M,

where m denotes the orthogonal projection onto L.




Exercise (cf. Ex. 7.2)

Let M be the model of binomial random variables Bin(2, 0):

M ={((1-0)2001-0),6% € Ny |0 (0,1)}

o What is the ML degree of M7

o Compute the MLE @ for the two data points u = (8,6,5) and
v = (4,20,8). Interpret your results.



