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ABSTRACT

Determining the rank of a tensor has always been an interesting and
important problem in algebraic complexity theory[8], algebraic statis-
tics[3, 9], engineering[4] and algebraic geometry[6]. In this paper, I will
first give a criterion for a generic m x n X n to have rank n. Right
after the criterion, the first application is given . Then the symmet-
ric version of this criterion is formulated. In Section 4, I will give a
detailed discussion of the (O(1,2) symmetric) ranks of (O(1,2) sym-
metric) 3 x 2 X 2 tensors over the complex and real numbers with the
aid of these criterions. This criterion also provides another way to at-
tack the ”Salmon Problem” over real numbers.

1. THE CRITERION

In this section, we are working over any fixed field K. Foramxnxn
tensor X, let X3, Xo, -+ , X, (which are n x n matrices) denote the
slices in the first direction.

Theorem. Let X be am xn xn tensor with X; nonsingular. Then
X has rank n if the set of matrices

can be diagonalized simultaneously.

Remark. The condition of the theorem can be weakened. In fact,
if there exists a nonsingular linear combination of slices X, Xy, - -
, Xm, then we can just replace X; by that linear combination. This
operation doesn’t change the rank at all. Note also that all linear com-
binations of X; are singular is an algebraic condition, it amounts to say

that det(d"1, ;X;) = 0 for all \; € C, i.e. all the coefficients of \; are
1
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zero. These are algebraic conditions on the entries of X.

Proof. Suppose the set of matrices
{(X;X;':i=2,...,n}
can be diagonalized simultaneously, that is, there exist invertible ma-
trix P such that for i = 2, ... | n,
PX;X['P' = E;

where F;s are diagonal matrices.

Suppose
el 0 0
0 e 0
E; = ; .
0 0 el

For notation consistence, let £y := I,,. Then forz=1,...,n

Xi - PilEiPXl.
Suppose
Pt =(ay, ay, ..., ay)
and
by
by
PX,=1 .
BT
for ag, bj e K™
Then
e 0 -+ 0 bl
) 0 e 0 bl
Xi =P EZPXl = (al, as, ..., an) .
0 0 el b

= e’ial(bﬁT + Béag(bg)T + ...+ enan(bn)T.
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The above formula implies X has rank < n, but X; is nonsingular
implies X has rank > n. So we have X has rank exactly n. [

2. FIRST APPLICATION: THE n-TH SECANT VARIETY OF P! x Pr—1
x P" 1 1S NOT DEFECTIVE OVER C

In this section, we work over complex numbers. Let P! x P! x
P! be the Segre variety embedded in P2"°~!. The expected dimension
of the n-th secant variety o, (P' x P*~1 x P"1) is

(n)(1+n—14+n—-1)+n—1=2n*—-1.

In other words, we expect o, (P! x P*~! x P*~1) to fulfill the ambi-
ent space P21, In fact this is the case, as stated below.

Corollary. o, (P' x P! x P*~1)= p2%*~1,

Proof. Let
Uy ={X¢€ C’® C"® C": X; nonsingular and
X5(X,)™! is diagonalizable}.

Let A denote the discriminant of det(Xs — AX7)=0, then the com-
plement U of Z := {X: detX; = 0, A=0 } is contained in U; because
A # 0 implies det(Xs — AX;)=0 has n distinct roots in C and this
implies X»(X;)™! is diagonalizable over C. By the criterion given in
the previous section, U; C 0,(P* x P! x P" 1) so Uy C 0,(P' x
P! x P 1). But Us is a Zariski open set, take the Zariski closure of
the above inclusion, we get P2**~1 C ¢, (P' x P"! x P"~!) and finally
they are equal. [J

3. THE SYMMETRIC VERSION

In this section, we work over real numbers and consider the Segre-
Veronese embedding

P(U) x P(V) — P(U & S*V)

with linear system O(1,2), where U, V are linear spaces of dimension
m, n over R. For a O(1,2) symmetric tensor X € P(U ® S?V), let X1,
Xs, -+, X, (which are n x n symmetric matrices) denote the slices in
the first direction. A decomposable tensor in P(U ® S?V') has the form
u®v®v. Here X has rank n means k is the least number k such that
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X can be written as the sum of k decomposable tensors in P(U ® S?V).

Theorem. Let X € P(U ® S?V). Then rank(X)< n if the set of
matrices {X;} commute.

Proof. The X;s are symmetric, they commute implies they can be
orthogonally diagonalized simultaneous, i.e. there exists an orthogonal
matrix P such that D; := P7'X;P are diagonal for all i. Then X; =
PD;P~' = PD;PT. Suppose D; = diag {d;1, ... , din}, P = (ay, ...
a,) where a; € R" then

Y

ay

pPT=|:

a"

and
dzl 0 - 0 CL’l
Xi = (a1, .y a) |+ 7 e :
0 0 - dn) \d
=dyaay + ... + dipanal,.

The above formula implies X has rank <n. [J

4. RANKS OF 3 x 2 x 2 TENSORS

Let R(l,n,m)r/R(l,n,m)c denote the maximal possible rank of  x
m X n tensors over real/complex numbers. Let R(l,n,m) denote the
maximal broader rank (typical rank) of [ x m X n tensors over complex
numbers.

For 2 x 2 x 2 tensors, it is classically known that R(2,2,2)g =
R(2,2,2)c = 3, see [7] for a simple proof. Over complex numbers,
as stated in Section 3, R(2,2,2) = 2. Over real numbers, somehow
surprisingly, the two subsets of rank 2 and 3 tensors both have positive
volume, as pointed out by Kusakal in [4]. A detailed analysis of ranks
of 2 x 2 x 2 tensors over R can be found in [1] and [4].

For 3x2x 2 tensors, it is also known that R(3,2,2)r = R(3,2,2)c = 3.
Denote the slices of a nonzero 3x2x2 tensor X in the first /second /third
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direction by X1> XQ, Xg/Yi, Yé/Zl, ZQ.

Proposition. For a nonzero 3 x 2 x 2 tensor X, rank(X) = 1 if and
only if
(1) All linear combinations of X;, X5, X3 are singular, and
(2) Both Y; and Y; have rank < 1 and
(3) Both Z; and Z; have rank < 1.

Proof. 7=" If some linear combinations of X, X5, X3 are non-
singular or some rank(Y;) = 2 or some rank(Z;) = 2, then trivially
rank(X) > 2.

7<=" Suppose X is
a b c
d e f

Up to permutation, we can assume a # 0. By conditions (1), (2),
and (3) in this proposition, X has the following form:

a a1a Qa
aza € f

with constants a; € K. Then

a a1 Qo0
w= () = () 2= ()

If a; # 0, e must be a multiple of a because X5 is singular. In the
case a; = 0, from the fact that X; + X5 is singular, we also get that e
is a multiple of a. So in any case, e is a multiple of a. Similarly, f is a
multiple of a.

with a, b, ¢, d, e, f € K2

After possible row and column operations (which does not change
the rank), we can further assume that ay = as = a3 = 0, ie. X

becomes
a 0 0
0 asa asa

for some ay, a; € K. Suppose

= (2)
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aq 0
0 [e71eA]

is singular, so ay = 0. Similarly, we get a5 = 0. That proves X has
rank 1. [

We know

to be continued...
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