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Abstract

Determining the rank of a tensor has always been an interesting and
important problem in algebraic complexity theory[8], algebraic statis-
tics[3, 9], engineering[4] and algebraic geometry[6]. In this paper, I will
first give a criterion for a generic m × n × n to have rank n. Right
after the criterion, the first application is given . Then the symmet-
ric version of this criterion is formulated. In Section 4, I will give a
detailed discussion of the (O(1, 2) symmetric) ranks of (O(1, 2) sym-
metric) 3× 2× 2 tensors over the complex and real numbers with the
aid of these criterions. This criterion also provides another way to at-
tack the ”Salmon Problem” over real numbers.

1. The Criterion

In this section, we are working over any fixed field K. For a m×n×n
tensor X, let X1, X2, · · · , Xm (which are n× n matrices) denote the
slices in the first direction.

Theorem. Let X be a m×n×n tensor with X1 nonsingular. Then
X has rank n if the set of matrices

{XjX
−1
1 : j = 2, ...m}

can be diagonalized simultaneously.

Remark. The condition of the theorem can be weakened. In fact,
if there exists a nonsingular linear combination of slices X1, X2, · · ·
, Xm, then we can just replace X1 by that linear combination. This
operation doesn’t change the rank at all. Note also that all linear com-
binations of Xi are singular is an algebraic condition, it amounts to say
that det(

∑n
i=1 λiXi) ≡ 0 for all λi ∈ C, i.e. all the coefficients of λi are
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zero. These are algebraic conditions on the entries of X.

Proof. Suppose the set of matrices

{XiX
−1
1 : i = 2, ..., n}

can be diagonalized simultaneously, that is, there exist invertible ma-
trix P such that for i = 2, ... , n,

PXiX
−1
1 P−1 = Ei

where Eis are diagonal matrices.

Suppose

Ei =




ei
1 0 · · · 0
0 ei

2 · · · 0
...

...
. . .

...
0 0 · · · ei

n




For notation consistence, let E1 := In. Then for i = 1, ..., n

Xi = P−1EiPX1.

Suppose

P−1 = (a1, a2, ... , an)

and

PX1 =




bT
1

bT
2
...

bT
n




for ai, bj ∈ Kn.

Then

Xi = P−1EiPX1 = (a1, a2, ... , an)




ei
1 0 · · · 0
0 ei

2 · · · 0
...

...
. . .

...
0 0 · · · ei

n







bT
1

bT
2
...

bT
n




= ei
1a1(b1)

T + ei
2a2(b2)

T + ... + ei
nan(bn)T .
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The above formula implies X has rank ≤ n, but X1 is nonsingular
implies X has rank ≥ n. So we have X has rank exactly n. ¤

2. First Application: the n-th secant variety of P1 × Pn−1

× Pn−1 is not defective over C

In this section, we work over complex numbers. Let P1 × Pn−1 ×
Pn−1 be the Segre variety embedded in P2n2−1. The expected dimension
of the n-th secant variety σn(P1 × Pn−1 × Pn−1) is

(n)(1 + n− 1 + n− 1) + n− 1 = 2n2 − 1.

In other words, we expect σn(P1 × Pn−1 × Pn−1) to fulfill the ambi-

ent space P2n2−1. In fact this is the case, as stated below.

Corollary. σn(P1 × Pn−1 × Pn−1)= P2n2−1.

Proof. Let

U1 = {X ∈ C2 ⊗ Cn ⊗ Cn : X1 nonsingular and

X2(X1)
−1 is diagonalizable}.

Let 4 denote the discriminant of det(X2 − λX1)=0, then the com-
plement U2 of Z := {X: detX1 = 0, 4=0 } is contained in U1 because
4 6= 0 implies det(X2 − λX1)=0 has n distinct roots in C and this
implies X2(X1)

−1 is diagonalizable over C. By the criterion given in
the previous section, U1 ⊆ σn(P1 × Pn−1 × Pn−1), so U2 ⊆ σn(P1 ×
Pn−1 × Pn−1). But U2 is a Zariski open set, take the Zariski closure of

the above inclusion, we get P2n2−1 ⊆ σn(P1 × Pn−1 × Pn−1) and finally
they are equal. ¤

3. The Symmetric Version

In this section, we work over real numbers and consider the Segre-
Veronese embedding

P(U)× P(V ) −→ P(U ⊗ S2V )

with linear system O(1, 2), where U , V are linear spaces of dimension
m, n over R. For a O(1, 2) symmetric tensor X ∈ P(U ⊗S2V ), let X1,
X2, · · · , Xm (which are n×n symmetric matrices) denote the slices in
the first direction. A decomposable tensor in P(U ⊗S2V ) has the form
u⊗ v⊗ v. Here X has rank n means k is the least number k such that
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X can be written as the sum of k decomposable tensors in P(U⊗S2V ).

Theorem. Let X ∈ P(U ⊗ S2V ). Then rank(X)≤ n if the set of
matrices {Xi} commute.

Proof. The Xis are symmetric, they commute implies they can be
orthogonally diagonalized simultaneous, i.e. there exists an orthogonal
matrix P such that Di := P−1XiP are diagonal for all i. Then Xi =
PDiP

−1 = PDiP
T . Suppose Di = diag {di1, ... , din}, P = (a1, ... ,

an) where ai ∈ Rn, then

P T =




a′1
...

a′n




and

Xi = (a1, ..., an)




di1 0 · · · 0
...

...
. . .

...
0 0 · · · din







a′1
...

a′n




= di1a1a
′
1 + ... + dinana

′
n.

The above formula implies X has rank ≤ n. ¤

4. Ranks of 3× 2× 2 Tensors

Let R(l, n, m)R/R(l, n, m)C denote the maximal possible rank of l×
m × n tensors over real/complex numbers. Let R(l, n, m) denote the
maximal broader rank (typical rank) of l×m×n tensors over complex
numbers.

For 2 × 2 × 2 tensors, it is classically known that R(2, 2, 2)R =
R(2, 2, 2)C = 3, see [7] for a simple proof. Over complex numbers,
as stated in Section 3, R(2, 2, 2) = 2. Over real numbers, somehow
surprisingly, the two subsets of rank 2 and 3 tensors both have positive
volume, as pointed out by Kusakal in [4]. A detailed analysis of ranks
of 2× 2× 2 tensors over R can be found in [1] and [4].

For 3×2×2 tensors, it is also known that R(3, 2, 2)R = R(3, 2, 2)C = 3.
Denote the slices of a nonzero 3×2×2 tensor X in the first/second/third
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direction by X1, X2, X3/Y1, Y2/Z1, Z2.

Proposition. For a nonzero 3× 2× 2 tensor X, rank(X) = 1 if and
only if
(1) All linear combinations of X1, X2, X3 are singular, and
(2) Both Y1 and Y2 have rank ≤ 1 and
(3) Both Z1 and Z2 have rank ≤ 1.

Proof. ”=⇒” If some linear combinations of X1, X2, X3 are non-
singular or some rank(Yj) = 2 or some rank(Zk) = 2, then trivially
rank(X) ≥ 2.

”⇐=” Suppose X is

(
a b c
d e f

)

with a, b, c, d, e, f ∈ K2.

Up to permutation, we can assume a 6= 0. By conditions (1), (2),
and (3) in this proposition, X has the following form:

(
a α1a α2a

α3a e f

)

with constants αi ∈ K. Then

X1 =

(
a

α3a

)
X2 =

(
α1a
e

)
X3 =

(
α2a
f

)

If α1 6= 0, e must be a multiple of a because X2 is singular. In the
case α1 = 0, from the fact that X1 + X2 is singular, we also get that e
is a multiple of a. So in any case, e is a multiple of a. Similarly, f is a
multiple of a.

After possible row and column operations (which does not change
the rank), we can further assume that α1 = α2 = α3 = 0, i.e. X
becomes (

a 0 0
0 α4a α5a

)

for some α4, α5 ∈ K. Suppose

a =

(
a1

a2

)
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We know (
a1 0
0 α4a1

)

is singular, so α4 = 0. Similarly, we get α5 = 0. That proves X has
rank 1. ¤

to be continued...
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