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1 Introduction

A major problem in theoretical computer science is the Permanent vs. Deter-
minant problem. It asks: given an n by n matrix of indeterminates A = (ai,j)
and an m by m matrix B with entries that are affine linear functions of the
entries of A, what is the smallest m such that the determinant of B equals
the permanent of A?

In other words, what is the complexity of writing the permanent in terms
of the determinant? At first, one might believe that there should not be
much difference because the two functions

detA =
∑
σ∈Sn

sgn(σ)
n∏
i=1

ai,σ(i)

and

permA =
∑
σ∈Sn

n∏
i=1

ai,σ(i)

appear to be very similar. However it is conjectured that m > poly(n)
asymptotically. It is strongly believed that this conjecture is true because its
falsity would imply P = NP . [1]

The best lower bound for the determinantal complexity of permn was
obtained by studying the Hessian matrices of permn and detm. In this paper,
we will let T

(2)
p (xi,j)1≤i,j≤n denote the n2 by n2 matrix with the entry in row

i, j and column k, l equal to

∂2

∂xi,j∂xk,l
permn(xi,j)

and we will let T
(2)
d (xi,j)1≤i,j≤n denote the corresponding matrix for detn.
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2 Lower Bound

Although the conjecture is that the permanent would have super polynomial
determinantal complexity, the best lower bound attained so far is merely
quadratic. This bound is due to Mignon and Ressayre. [2]

Theorem 2.1 The determinantal complexity of permn is at least n2/2.

The proof of their result depends on the existence of an n by n matrix
C with permn(C) equal to 0 and T

(2)
p (C) having full rank. We will assume

that n ≥ 3 since the case of n = 2 is trivial.

Lemma 2.2 Let n ≥ 3. Let C be an n by n matrix with C1,1 = −n+ 1 and

Ci,j = 1 for (i, j) 6= (1, 1). Then permn(C) = 0 and rank(T
(2)
p (C)) = n2.

Proof By doing a Laplace expansion along the first row of C we get permn(C) =
−(n − 1)Pn−1 + (n − 1)Pn−1 = 0, where Pk is the permanent of the k by k
matrix with all entries equal to 1.

Note that Pk is equal to k!. We claim that

∂2

∂xi,j∂xk,l
permn(C) =

{
(n− 2)! if 1 ∈ {i, j, k, l}
−2(n− 3)! otherwise

Indeed, differentiating permn with respect to xi,j and xk,l is equivalent to
deleting rows i and k and columns j and l and taking the determinant of
the remaining sub matrix. If 1 ∈ {i, j, k, l}, then the remaining sub matrix
is Pn−2. Otherwise, the remaining sub matrix is the n − 2 by n − 2 matrix
with upper left entry equal to 1− n and all other entries equal to 1.

Therefore, we can say

T (2)
p (C) = (n− 3)!


0 B B · · · B
B 0 C · · · C

B C 0
. . .

...
...

...
. . . . . . C

B C · · · C 0


where

B = (n− 2)


0 1 · · · 1

1 0
. . .

...
...

. . . . . . 1
1 · · · 1 0


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and

C =


0 n− 2 n− 2 · · · n− 2

n− 2 0 −2 · · · −2

n− 2 −2 0
. . .

...
...

...
. . . . . . −2

n− 2 −2 · · · −2 0


To show that T

(2)
p (C) has full rank, we show that it has a trivial kernel.

Since B = (n−2)(Jn−In), then B only has eigenvalues 2−n and (n−1)(n−2)
so it has full rank.

Now let Cv = 0. By looking at the bottom two rows of C we have
(n− 2)v1− 2v2− · · ·− 2vn−2− 2vn = 0 and (n− 2)v1− 2v2− · · ·− 2vn−1 = 0.
This implies vn−1 = vn. By a similar argument, va = vb for all 2 ≤ a, b ≤ n.

By considering the first row of C, this implies that v2 = v3 = · · · = vn = 0.
It follows that v1 = 0 and v = 0. Therefore, both B and C have full rank.

Now let x =


~x1
~x2
...
~xn

 where each ~xi is a vector in Rn. Arguing similarly

as we did for the matrix C we can show that T
(2)
p (C) has full rank by first

observing that C( ~xa − ~xb) = 0 for all 2 ≤ a, b ≤ n. Since C has full rank,
then ~xa = ~xb for all 2 ≤ a, b ≤ n. Thus ~x2 = · · · ~xn. By considering the first
row of T

(2)
p (C) we see that ~xa = ~0 for all 2 ≤ a ≤ n because B has full rank.

It follows that ~x1 = ~0 as well giving the desired result. �

We now present the proof of Mignon and Ressayre’s lower bound using
the matrix C from Lemma 2.2.

Proof (of Theorem 2.1) Let m be the determinantal complexity of permn.
Then there exists a family of affine linear functions Ak,l, for 1 ≤ k, l ≤ m in
the variables xi,j for 1 ≤ i, j ≤ n, with permn(xi,j) = detm(Ak,l(xi,j)1≤i,j≤n).

We can perform a translation on the coordinates xi,j. By this we mean,
there exist homogeneous linear functions Lk,l and a matrix of constants Y
such that (Ak,l(xi,j))k,l = (Lk,l(xi,j − Ci,j)) + Y . Thus

permn(xi,j) = detm((Lk,l(xi,j − Ci,j)) + Y ) (2.1)

Wolog, we can apply a series of row and column operations to Y to put

it in the form

[
0 0
0 Is

]
. Since perm(C) is 0, then by equation (2.1), Y has
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determinant 0 and so does not have full rank. Thus s < m. Encode the row
operations in a matrix P and the column operations in a matrix Q. Note

that if we left multiply the above determinantal matrix by

[
detP−1 0

0 Im−1

]
P

and right multiply by Q

[
detQ−1 0

0 Im−1

]
then we do not change the value of

the determinant.
Since [

detP−1 0
0 Im−1

]
PY Q

[
detQ−1 0

0 Im−1

]
=

[
0 0
0 Is

]
then wolog we can just let Y =

[
0 0
0 Is

]
in equation (2.1).

By the multivariate chain rule, there exists an m2 by n2 matrix L such
that

T (2)
p (xi,j) = LT (T

(2)
d (Lk,l(xi,j − Ci,j) + Y )k,l)L

The matrix L has its (k, l, i, j) entry given by ∂
∂xi,j

Lk,l(xi,j − Ci,j).
Therefore

T (2)
p (C) = LTT

(2)
d (Y )L

Thus, rank(T
(2)
p (C)) ≤ rank(T

(2)
d (Y )). By Lemma 2.2, rank(T

(2)
p (C)) =

n2. Therefore it suffices to show that rank(T
(2)
d (Y )) ≤ 2m.

To see this, first consider the case when s = m− 1. Note that

∂2

∂xi,j∂xk,l
detmY

is non-zero if and only if one of the following holds:

1. (i, j) = (1, 1) and (k, l) = (t, t) for some t > 1

2. (i, j) = (1, t) and (k, l) = (t, 1) for some t > 1

3. (i, j) = (t, 1) and (k, l) = (1, t) for some t > 1

4. (i, j) = (t, t) and (k, l) = (1, 1) for some t > 1

The above four conditions tell us that T
(2)
d (Y ) has 3m − 2 nonzero rows

(1 row for condition 1 and m− 1 rows each for conditions 2, 3, and 4). Each
of the m− 1 rows satisfying condition 4 are all copies of the same row with
a 1 in column (1, 1) and zeroes in every other column.
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The 2m− 2 rows satisfying conditions 2 and 3 have only a single nonzero
entry (of value 1) and each row contains a 1 in a different column. The row
satisfying condition 1 contains m− 1 nonzero entries. These nonzero entries
are in columns that are not in the support of the rows satisfying conditions
2, 3, or 4. Thus, there are exactly 2m linearly independent rows in T

(2)
d (Y ).

Now consider the case when s = m− 2. Note that

∂2

∂xi,j∂xk,l
detmY

is non-zero if and only if i, j, k, l ∈ {1, 2}. Then the number of non-zero

entries in T
(2)
d (Y ) is at most 4 which is certainly less than 2m as n grows.

If s < m− 2, then every entry of T
(2)
d (Y ) is 0 so we are done. �

3 Upper Bounds

There is a combinatorial interpretation for permn. Let G be a digraph on n
vertices labelled {1, 2, . . . , n} and let (xi,j)1≤i,j≤n be the weighted adjacency
matrix for G. Then perm(xi,j) is equal to the number of weighted directed
cycle covers of G.

This is because

perm(xi,j) =
∑
σ∈Sn

n∏
i=1

xi,σ(i)

and each cycle cover of G can be encoded as a permutation σ ∈ Sn with
σ(i) identifying the directed edge (i, σ(i)) in G. The determinant can be
interpreted similarly, but each cycle cover would be weighted by the sign of
the permutation that it corresponds to. Thus, if every cycle cover of a graph
corresponded to a permutation with even sign, then the permanent and the
determinant would share this combinatorial interpretation.

Using this idea, Grenet was able to provide an upper bound for the de-
terminantal complexity of the permanent. [3]

Theorem 3.1 There exists a 2n − 1 by 2n − 1 matrix M with all entries of
the form -1, 0, 1, or xi,j such that detM = permn(xi,j).

Proof Let G be a graph where the vertices are in bijection with subsets of
{1, 2, . . . , n} but the vertices corresponding to ∅ and the whole set {1, 2, . . . , n}
are identified as the same vertex v0. It follows that G has 2n − 1 vertices.
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Suppose vertices v, w correspond to S, T ⊆ {1, 2, . . . , n} respectively. We
will put a directed edge with weight xi,j (with 1 ≤ i, j ≤ n) between vertices
v and w if and only if |S| = i+1, |T | = i+2, and T \S = {j}. The vertex v0
will have outgoing edges labelled xn,j and incoming edges labelled xi,n. Now
put loops with weight 1 on every vertex except v0 to complete the edge set
of G.

Note that every non-loop cycle in G has the form x1,σ(1), x2,σ(2), . . . , xn,σ(n)
since each cycle can be seen as the number of ways to add elements to the
empty set until you have the set {1, 2, . . . , n}. Since every vertex except v0
contains a loop, then all cycle covers ofG consist of non-loop cycles containing
v0 and loops. Thus, every cycle cover of G corresponds to an n-cycle. Note
that the sign of an n-cycle is (−1)n−1.

Let M be the adjacency matrix of G . It follows that the determinant of
M equals

(−1)n−1
∑
σ∈Sn

x1,σ(1)x2,σ(2) · · ·xn,σ(n)

which is equal to ±permn(xi,j). If detM = −perm(xi,j), then multiply the
first row of M by -1 to get detM = perm(xi,j). �

Figure 1 shows the graph obtained from the proof of Theorem 3.1 in the
case when n = 3. It is understood that the nodes labelled ∅ and [3] = {1, 2, 3}
are identified together and S refers to the complement of S in [3].

4 Glynn’s Formula

We can consider alternative methods of rewriting the permanent besides
expressing it as a determinant. Ryser was able to use inclusion-exclusion to
write permn as a sum of 2n − 1 terms rather than a sum of n! terms. Glynn
was able to provide another exponential expression for permn, but he was
able to write the polynomial as a sum of 2n−1 terms. [4]

Theorem 4.1 We can write

2n−1permn =
∑
δ

(
n∏
k=1

δi

)
n∏
j=1

n∑
i=1

δixi,j

where the outer sum is over all 2n−1 vectors δ ∈ {−1, 1}n with δ1 = 1.
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{1} {2} {3}

{1} {2} {3}

[3]

x0,3x0,1 x0,2

x1,3

1

x1,2 x1,2

1

x1,1x1,3

1

x1,1

x2,1

1

x2,2

1

x2,3

1

Figure 1: n = 3

Proof Consider a monomial m in the xi,j variables on the RHS of our pro-
posed equality. Let λi be the degree of m in the variables xi,j for fixed i and
varying j. Let the coefficient of m be c.

We have

c =
∑
δ

n∏
i=1

δλi+1
i =

n∏
i=2

∑
δi∈{−1,1}

(δi)
λi+1

Thus c = 0 unless λi is odd for all i. Note that m has total degree n. Thus
n =

∑n
i=1 λi. Since λ1 = 1, then n − 1 =

∑n
i=2 λi and if λi is odd for all i,

then we must have λi = 1 for all i.
Thus, the only such monomials m with non-zero coefficient would have

coefficient 2n−1. These monomials would have the form
∏n

i=1 xi,σ(i) where
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σ ∈ Sn. It follows that the RHS of our proposed equality is equal to

∑
σ∈Sn

2n−1
n∏
i=1

xi,σ(i)

which is exactly 2n−1permn. �

5 Fano Schemes

The Fano scheme of a space X, denoted Fk(X), parameterizes k-dimensional
planes that lie on X. Let Dn and Pn denote the space in P n2−1 cut out by the
n by n determinant and permanent respectively. Work by Chan and Ilten
specifically studies the Fano schemes of the n by n determinant, Fk(Dn), and
the n by n permanent, Fk(Pn). [5] It turns out the geometry of these schemes
gives us information about the algebra of permanents.

Lemma 5.1 It is impossible to write perm3 as l1q1 + l2q2 where l1, l2 are
linear forms in the variables xi,j and q1, q2 are quadratic forms in xi,j.

Proof Suppose that perm3 = l1q1 + l2q2. Then the space Y cut out by l1
and l2 lies in the space cut out by perm3. Since Y ⊆ P8 is cut out by two
linear forms then it has codimension 2 which makes it a 6-dimensional space.

However, according to Table 2 in [5] the Fano scheme Fk(P3) is non-empty
if and only if k ≤ 5. The result follows by contradiction. �

6 The case of n = 3

For this section we will let perm3 be the permanent of

a b c
d e f
g h i

.

Grenet’s work gives a 7 by 7 matrix whose determinant equals the 3 by
3 permanent.
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perm

a b c
d e f
g h i

 = det



0 a d g 0 0 0
0 1 0 0 i f 0
0 0 1 0 0 c i
0 0 0 1 c 0 f
e 0 0 0 1 0 0
h 0 0 0 0 1 0
b 0 0 0 0 0 1


In conjunction with Theorem 2.1 and Theorem 3.1, we see that the de-

terminantal complexity of perm3 is 5, 6, or 7. It remains an open question
to determine exactly which of the three numbers is the true determinantal
complexity.

Another way of expressing of the permanent vs. determinant problem is
by saying that we want to find matrices C,A1,1, A1,2, . . . , A3,3 ∈ M(m) such
that M = C + x1,1A1,1 + x1,2A1,2 + · · ·+ x3,3A3,3 and

permn = det(M)

with m minimal. We can state a technical result that puts restrictions on
the determinantal representation of perm3.

Lemma 6.1 Let n = 3. If m = 6, then the rank of C is 5. If m = 5, then
the rank of C is 4.

Proof We will prove only the case when m = 6. The case when m = 5 is
similar. Note that by applying certain elementary row and column operations
to M we do not change the value of its determinant. Row operations can
be encoded as left multiplication by a matrix and column operations can be
encoded as right multiplication by a matrix.

Suppose C has rank less than 3. Note that we can left multiply M by
P and right multiply M by Q such that PCQ = Diag(1, 1, 0, 0, 0, 0). Then
detM = detPMQ. Since PMQ is a matrix with two entries of the form
1 + l (where l is a linear form in the variables (xi,j)) and every other entry
is a linear form in (xi,j), then every term in the polynomial detPMQ has
degree at least 4. Thus we cannot have perm3 = detM .

If C has rank exactly 3, then let P andQ be such that PCQ = Diag(1, 1, 1, 0, 0, 0).
It follows that the degree 3 part of detM = detPMQ is equal to detM ′

where M ′ is the lower-right 3x3 sub matrix of PMQ. This implies that
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perm3 can be written as the determinant of a 3 by 3 matrix which is false
because dc(3) ≥ 5.

Now suppose that C has rank equal to 4. Let P and Q be such that
PCQ = Diag(1, 1, 1, 1, 0, 0). The degree 2 part of detPMQ is equal to
detM ′ where M ′ is the lower 2x2 sub matrix of PMQ. Thus detM ′ = 0.
We can apply further row operations to M ′ to transform it into the form[
α β
0 0

]
where α and β are linear forms in the variables a, b, c, d, e, f, g, h, i.

We can extend these row operations to PMQ so that wolog

PMQ =


1 + d1 c1 c2 c3 e1 f1
c4 1 + d2 c5 c6 e2 f2
c7 c8 1 + d3 c9 e3 f3
c10 c11 c12 1 + d4 e4 f4
g1 g2 g3 g4 α β
h1 h2 h3 h4 0 0


where the indexed variables are linear forms in a, b, c, d, e, f, g, h, i.

The degree 3 part of detPMQ must be equal to perm3. This gives us

perm3 = α(f1h1 + f2h2 + f3h3 + f4h4) + β(e1h1 + e2h2 + e3h3 + e4h4)

which contradicts Lemma 5.1.
Finally suppose that C has full rank. Let P and Q be such that PCQ = I.

Then detM = detPMQ would contain a constant term 1 so we could not
have detM = perm3. The result follows. �

Glynn’s formula (Theorem 4.1) allows us to write perm3 as

(a+ d+ g)(b+ e+ h)(c+ f + i)− (a− d+ g)(b− e+ h)(c− f + i)−
(a+ d− g)(b+ e− h)(c+ f − i) + (a− d− g)(b− e− h)(c− f − i)

Another approach to determining the determinantal complexity of perm3

might involve studying Glynn’s formula, since he is able to express the per-
manent as a sum of 4 products of 3 linear terms rather than a sum of 6
products of 3 linear terms.
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