Math 239/Stat 260: Algebraic Statistics

Homework \# 4
Due: Tuesday, October 14, 2008

1. Consider the model for four binary random variables specified by the following set of three conditional independence statements

$$
\mathcal{C}=\{1 \Perp 4|\{2,3\}, 2 \Perp 3| 4,3 \Perp\{2,4\}\} .
$$

- Determine the polynomial ideal $I_{\mathcal{C}}$ representing this conditional independence model. What is the dimension of this model ?
- Compute the primary decomposition of the ideal $I_{\mathcal{C}}$. Discuss the statistical meaning of the irreducible components.
- Find an directed acyclic graph (DAG) for which precisely these three CI statements represent the local directed Markov property.
- Verify the directed Hammersley-Clifford Theorem (Theorem 3.2.10) for your DAG.

2. Prove the following cyclic implication among conditional independence statements for Gaussian random variables: If $1 \Perp 2|3,2 \Perp 3| 4$, $3 \Perp 4|5,4 \Perp 5| 1$ and $5 \Perp 1 \mid 2$ then $1 \Perp 2,2 \Perp 3,3 \Perp 4,4 \Perp 5$ and $5 \Perp 1$. Does the same implication hold for discrete random variables?
3. Let G be the (undirected) edge graph of the 3 -dimensional cube. Determine all conditional independence statements for the undirected pairwise Markov property on G, and also for the undirected global Markov property on G. Does there exist a probability distribution on eight binary random variables that satisfies the former but not the latter?
4. Make a serious attempt at solving the first problem in Section 7.10 (page 163) in the case when X_{1}, X_{2}, X_{4} are binary and X_{3} is ternary. What is your opinion about the two questions in Section 7.11? Do you think that the answer is "yes" or do you think that the answer is "no"?
