Math 113 (Bernd Sturmfels), Midterm Exam # 2 Tuesday, August 1, 9:00 a.m.–10:00 a.m.

Please start by writing your name and your student ID on the cover of your blue book. **This exam is closed book**. Do not use any notes, calculators, cell phones etc. Show all your work, and write full sentences if time permits. Each problem is worth 20 points, for a total of 100 points.

- (1) Classify all groups of order 65 up to isomorphism.
- (2) Show that the alternating group A_4 is generated by the two simple 3-cycles (123) and (234).
- (3) The ring of integers Z is a principal ideal domain, so each ideal in Z is generated by a single element. Consider the ideals

$$I = \langle 12, 20 \rangle$$
 and $J = \langle 18, 30 \rangle$.

Find a single generator for each of $I, J, I+J, I \cap J$, and $I \cdot J$.

- (4) Can you find examples of ideals I in commutative rings R with the following properties ?
 - (a) I is principal and maximal,
 - (b) I is principal but not prime,
 - (c) I is maximal but not prime,
 - (d) I is maximal but not principal,
 - (e) I is principal and prime but not maximal.
- (5) Consider the two polynomials $f = x^4 + x^3 + 7$ and $g = x^2 2$.
 - (a) Compute the remainder of f divided by g.
 - (b) Compute the remainder of g divided by the result of part (a).
 - (c) Determine the ideal in $\mathbf{Q}[x]$ generated by f and g.