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Abstract

We will follow the first two sections of Kirwan Chapter 7 to give us
a description of the resolution of singularity C̃ of a sinuglar curve C.
The first section defines the resolution of singularity and show that the
nonsingular part of C and C̃ is holomorphic bijective. In the second
section, Kirwan uses Newton polygon to get a sense of how the curve C
looks like near a singular point and gives us a description of the fibre of a
singular point of C in C̃.

1 Resolution of Singularity

In this section, Kirwan constructs a Riemann Surface M associated to the
singular curve C to prove the following theorem:

Theorem 1 C̃ is a compact connected Riemann surface. The map π : C̃ → C is
continuous and surjective. If C is nonsingular then π is a holomorphic bijection,
and in general π−1(Sing(C)) is finite and

π : C̃ − π−1(Sing(C))→ C − Sing(C)

is a holomorphic bijection.

C̃ is our resolution of singularity for C. The theorem above basically says
that the resolution of singularity that we are going to definite is exactly what
we want. It will ”zoom in” into the singular points by giving us finite fibre at
the singular points and keeping the other points bascially inact.

In order to construct C̃, we need to construct the Riemann SurfaceM. Since
the projective curves are defined by homogeneous polynomials, we can use

P (x, y(x), 1) = 0

to associate the curve with Riemann surfaces. Since the constructions is ex-
tremely long, I will outline the skeleton of the construction, and all the details
can be found in the book. We start with the following definition so we can
construct M.
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Definition 2 An ordered pair of meromorphics functions defined on an open
neighborhood of 0 in C, (f,g), is simply called a pair if f is not constant on any
neighbourhood of 0 and the map

t 7−→ (f(t), g(t))

is one-to-one near zero. A parameter change is a holomorphic funtion ρ, is a
holomorphic function defined on an open neighbourhood of 0 such that ρ(0) = 0,
ρ′(0) 6= 0. Using the inverse function theorem from complex analysis, we can
define a equivalence relation on the set of pairs. We say

(f, g) ∼ (f̃ , g̃)

when there is a parameter change ρ such that f ◦ ρ = f̃and g ◦ ρ = g̃ in some
neightbourhood of 0. The equivalence class of a pair (f, g) is called a meromor-
phic element, denoted by < f, g >.

The underlying set of M is the set of meromorphic elements. Now we will
define the topoloy onM. Choose a pair (f, g) and let r > 0 be small enough so
that f and g are both defined and meromorphic on the disk D(0, r) of centre 0
and radius r and the map

t 7−→ (f(t), g(t))

is one-to-one on D(0, r). We see that (f(t0 + t), g(t0 + t)) is a pair from the
above definition (as a function of t) if t0 ∈ D(0, r). Now we define

U(f, g, r) = {< f(t0 + t), g(t0 + t) >: t0 ∈ D(0, r)} ⊆ M.

The following lemma gives us a topology on M:

Lemma 3 A subset is of M is open if and only if it is a union of subsets of
the form U(f, g, r) defined above. This is a topology on M.

The proof of the above lemma can be found on page 187. We now define an
atlas of holomorphic charts on M

{φα : Uα → Vα : α ∈ A}

to make M a Riemann surface.

Definition 4 Let A be the set of all ordered triples (f,g,r) where (f,g) is a pair
and r > 0 is small enough so that f and g are defined and meromorphic on
D(0, r) and the mapping

t 7−→ (f(t), g(t))

is one-to-one on D(0, r).

Definition 5 If α = (f, g, r) ∈ A let

Uα = U(f, g, r)
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and
Vα = D(0, r)

and let φα : Uα → Vα be the inverse of the homeomorphism

θα : t0 7−→< f(t0 + t), g < t0 + +t >

θα is a homoemorphism by Lemma 7.4 (on page 188) in Kirwan’s book.

Proposition 6 M is a Riemann surface with the holomorphic atlas

Φ = {φα : Uα → Vα : α ∈ A}

defined above.

The proof that the induced transition functions are holomorphic is given on
page 189 and the proof that M is Hausdorff is given in page 201.

We can now relate M to our projective curves.

Definition 7 Let P(x,y,z) be a nonconstant irreducible homogeneous polyno-
mial of degree d not divisible by z. The Riemann surface Sp of P(x,y,z) is the
open subset of M consisting of all those elements < f, g > of M satisfying

P (f(t), g(t), 1) = 0

for all t in some neighbourhood of 0. If C is the projective curve

C = [x, y, z] ∈ P2 : P (x, y, z) = 0

then we write C̃ for Sp and define π : C̃ → C by

π(< f, g >) = [f̃(0), g̃(0), 0]

where f̃(t) = tnf(t) and g̃(t) = tnf(g) and n is the multiplicity of the pole at 0
of f or g, whichever is greater.

Using the definition above, we have finally constructed a resolution of sin-
gularity of the singular curve C and we can thus make sense of the theorem we
give in the beginning of the paper. By just looking at the definition, it is not
suprising that the Theorem holds. The part where f and g are both holomorphic
gives us the bijection between the nonsingular parts of C̃ and C and the other
part will in turn gives us the fibre on the singular points, as we can easily see
that functions with different mulitiplicity at the pole can be sent to the function
f̃ or g̃ as long as their holomorphic part is the same.

Note that our way to construct a resolution of singularity is not the only
way, in fact, there are quite a few other methods. For example, the blow-up we
have encounted in class is one of the ways to resolve singularity.

We will investigate the singular points using Newton’s method next.
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2 Newton polygons and Puiseux expansions

We will simplify our notation by projectively transforming the singular point to
[0,0,1]. The main result from this section is the following:

There existsm1, ...,mk ∈ Z+ and power series in x1/mj (Puiseux expansions)∑
r≥1

ar
(j)xr/mj

for i ≤ j ≤ k such that if x and y are near 0 then the Puiseux expansions
converge and

P (x, y, 1) = 1

if and only if

y =
∑
r≥1

ar
(j)(x1/mj )r

for some j ∈ {1, ..., k} and some choice of mjth root x1/mj of x.
It basically says that if x, y so that P (x, y, 1) = 0, y must be a series in

fractional powers of x. Newton used a method of calculating Puiseux expansions
via polygons. Before defining Newton polygon, we need to define the carrier of
a polynomial.

Definition 8 Let
P (x, y, 1) =

∑
α,β

cαβx
αyβ ,

then the carrier, 4(P ), of P (x, y, 1) is

4(P ) = {(α, β) ∈ Z2 : cαβ 6= 0}

Definition 9 If p, q ∈ R2 let

[p, q] = {tp+ (1− t)q : 0 ≤ t ≤ 1}

be the line segment from p to q. Newton polygon of P is the boundary of the
convex subset of R2 consisting of those (x, y) ∈ R2 such that

x ≥ a and y ≥ b

for some (a, b) ∈ [δ1, δ2] where δ1 and δ2 belong to the carrier 4(P ).

Notice from the definition the Newton polygon must consist of a vertical half-line
and a horizontal half-line.
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Figure: Newton Polygon

So what do we do with this Newton polygon? Notice that we can always choose
coordinates such that P (x, y, z) is not divisible by x, so we have

(0, β) ∈ 4(P ).

The case where the Newton polygon is one point (it must be our point), we
have a trivial solution y = 0. For the nontrivial cases, we start with the steepest
segment and let (0, β0) be the upper endpoint of the segment (convexness ensures
it has endpoint of this form) and let − 1

µ0
be its slope. Since the points in the

carrier of P must be integer valued, the slope is rational (also positive by the
construction of Newton polygon). Say

µ0 =
p0
q0

where p0 and q0 positive comprime integers. We then write

P (x, y, 1) =
∑

α0+µ0β≥ν0

cαβx
αyβ

where
ν0 = µ0β0

We want to ”pull out” the parts where ν0 = α + µ0β. Clearly, (0, β0) satisfies
the above equation. We can also find another point satisfying the above, namely
the other point our chosen line segment. The slope of our chosen line is

β0 − β
−α

= − 1

µ0
.
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Rearrange it and we get
µ0β0 = α+ µ0β

which tells us precisely that the other point satisfies our condition. With these,
we can ”pull out” the part where ν0 = α+ µ0β and write

P (x, txµ0 , 1) = xν0f0(t) +
∑

α+µ0β>ν0

cαβx
αyβ

where
f0(t) =

∑
α+µ0β=ν0

cαβt
β

Since f0 only has one variable, it has a nonzero root, say t0. Making

y0 = t0x
µ0

gives us the first approximate solution to the equation

P (x, y, 1) = 0

by making the ν0 term vanishes. To continue, we next make the substituion

x = (x1)q0 and y = x1
p0(t0 + y1)

We get
P (x, y, 1) = x1

q0ν0P1(x1, y1)

where
P1(x1, y1) =

∑
q0α+p0β≥q0ν0

cαβx1
q0α+p0β−q0ν0(t0 + y1)β

We can just repeat the process we did for P(x,y,1) and continue to get approxi-
mate solutions (xi, yi)’s. We will thus get an expansion of y by summing up all
the yi’s. The series we get from this process is call a Puiseux expansion for the
curve

C = {[x, y, z] ∈ P2 : P (x, y, z) = 0}

The next theorem shows the properties of Puiseux expansion, as stated in the
beginning of the section.

Theorem 10 Any Puiseux expansion

y =
∑
r≥1

arx
r/n

for the curve C near the point [0,0,1] is a power series in x1/n which converges
for x sufficiently close to 0 and satisfies

P (x,
∑
r≥1

arx
r/n, 1) = 0
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The above theroem thus conclues this section as it gives us exactly what we
want, i.e., the Puiseux expansion near the singular point [0,0,1] give us a picture
of what the points near the singularity look like by giving us a description of
how y behaves given an x. Before we end the paper, we will look at the fibre of
our Riemann surface C̃ at [0,0,1], our singular point. We have

π−1{[0, 0, 1]} = {< tmj , gj(t) >: 1 ≤ j ≤ i, gj(0) = 0}

where the Pusieux expansion of C near [0.0,1] are given by

y = gj(e
2πis/mjx1/mj ), 1 ≤ j ≤ l, 1 ≤ s ≤ mj , gj(0) = 0

We know that every element < f, g > of M can be express in one of the forms:

< a+ tm, g(t) > if f holomorphic at 0 and f(t)− c0 has multiplicity m at 0

and
< t−m, g(t) > if f has poles of order m at 0

from Remark 7.10 in page 190. This tells us that our π−1{[0, 0, 1]} does indeed
has the form stated above because a+ tm = 0 when t = 0 =⇒ a = 0

Two Puiseux expansions are essentially different if the j’s are different, i.e. we
are taking different order roots. By the way we define the meromorphic elements
in M, we see that the points in the inverse image of [0,0,1] in C̃ are given by
the essentially different Puisueux expansions near [0,0,1]. Thus computing the
Puiseux expansions will tell us how the fibre of the singular points look like.
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