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Quadratic Formula

(x®a)®(xd(b—a)) if2a<b,

2
X ® aGx & b =
{ (x@g)2 otherwise.

Note: Two different polynomials can represent the same function.

Fundamental Theorem of Algebra

Every tropical polynomial function f(x) of degree n is uniquely
the product of n linear polynomials x & ¢; times a constant.
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Al: x=2, 4 and 5.
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Solving Cubic Equations

Q1: What are the roots of x3®2x2 ®6x H 11 ?
Al: x =2, 4 and 5.

2832-2206-2011
$202-4206-4011

The minimum is attained twice.
53®2-52@6-5011

Q2: Let K = Q(e).

What are the roots of x3 4+ e2x% + e0x — 11 ?
A2:

X

2 —et—e® T — 28 .
et —e® 3" — 38— 16 + ...
e 4+ e% 426" 4+ 58 +13:° + ...
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Plane Geometry

Any two lines meet in a unique point.

Q: Does Pappus’ Theorem hold tropically?

A: No (math.AG/0306366)
Yes (math.AG/0409126)
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A SE—

@ One vertex for each bounded region.
@ One edge connecting each pair of adjacent regions.
@ Rotate 180°.
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Three Facts About Plane Curves

e Through any five points in R?, there is a unique quadratic curve.

@ Cubic curves are elliptic curves (genus 1)

o Bézout’s Theorem: Two plane curves of degree d and e
always intersect in d - e points.
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Matrices and Metrics

1 2
0 dip diz dus
D— d1 0 doz dn
d31 dx» 0 d3u
dar dap dgz O
3 4

@ The (i,j)-entry of the matrix DXx=D®D®---® D
is the length of a shortest path from i to j using < k steps.
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Matrices and Metrics

1 2
0 dip diz dus
D— d1 0 doz dn
d31 dx» 0 d3u
dar dap dgz O
3 4

@ The (i,j)-entry of the matrix DXx=D®D®---® D
is the length of a shortest path from i to j using < k steps.

@ To find shortest pairwise distances in a directed graph D
with n nodes, compute the tropical matrix power D".

Bernd Sturmfels (UC Berkeley) Tropical Mathematics 12 / 15



o Disa metricif D=DT >0
and D? = D (triangle inequalities)



o Disa metricif D=DT >0
and D? = D (triangle inequalities)

e D is a tree metric if it comes
from a tree with edge lengths.



Metrics and Tree Metrics

o Disa metricif D= DT >0
and D? = D (triangle inequalities)

e D is a tree metric if it comes
from a tree with edge lengths.

Eg.:dipo=5+1+7=13,
diz3=5+6=11, etc.

Bernd Sturmfels (UC Berkeley) Tropical Mathematics 13 / 15



Metrics and Tree Metrics

o Disa metricif D= DT >0
and D? = D (triangle inequalities)

e D is a tree metric if it comes
from a tree with edge lengths.

Eg.:dipo=5+1+7=13,
diz3=5+6=11, etc.

Q: Is every metric a tree metric?

Bernd Sturmfels (UC Berkeley) Tropical Mathematics 13 / 15



Metrics and Tree Metrics

o Disa metricif D= DT >0
and D? = D (triangle inequalities)

e D is a tree metric if it comes
from a tree with edge lengths.

Eg.:dipo=5+1+7=13,
diz3=5+6=11, etc.

Q: Is every metric a tree metric?
A: No, but

Bernd Sturmfels (UC Berkeley) Tropical Mathematics 13 / 15



Metrics and Tree Metrics

o Disa metricif D= DT >0
and D? = D (triangle inequalities)

e D is a tree metric if it comes
from a tree with edge lengths.

Eg:dp=5+1+7=13
di3 =5+6=11, etc.
Q: Is every metric a tree metric?

A: No, but biologists care about those that are.
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Theorem [4 Point Condition]:
A metric D is a tree metric if and only if

-D € T(djody & dx©dy & diy® di)

for any four taxa i, j, k and /.
Proof: [ASCB, Theorem 2.34]

D1 =13, D13 =11, D14 =8, Do3 =14, Doy = 9, D34 = 0.
dio©dzg ® dizOdog ® digOdz = —220 200 —-22 = —22.

Theorem: The space of trees equals the tropical Grassmannian G(2, n).
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What Next?

Review what you have seen in this lecture:

Tropical mathematics, Mathematics Magazine 82 (2009) 163-173.

Visit the Mathematical Sciences Research Institute (MSRI)
either in person in Berkeley
or online at www.msri.org

Research Program on Tropical Geometry
August 17 to December 18, 2009
Co-organizers: Eva-Maria Feichtner, llia Itenberg, and Grigory Mikhalkin.
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