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Tropical Arithmetic

Addition and Multiplication:

x ⊕ y = minimum of x and y

x � y = x + y

Example:

3� (4⊕ 5) = 3� 4 ⊕ 3� 5 = 7⊕ 8 = 7

Neutral Elements:

∞⊕ x = x

0� x = x
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Tropical Semiring (R ∪ {∞},�,⊕)

Matrix Multiplication[
3 3
0 7

]
�
[

4 1
5 2

]
=

[
7 4
4 1

]
Polynomials

f (x) = x2 ⊕ 1� x ⊕ 4

= min{2x , 1 + x , 4}
= (x ⊕ 1)� (x ⊕ 3)
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Quadratic Formula

x2 ⊕ a� x ⊕ b =

{
(x ⊕ a)� (x ⊕ (b−a)) if 2a ≤ b,

(x ⊕ b
2 )2 otherwise.

Note: Two different polynomials can represent the same function.

Fundamental Theorem of Algebra

Every tropical polynomial function f (x) of degree n is uniquely
the product of n linear polynomials x ⊕ ci times a constant.
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Solving Cubic Equations

Q1: What are the roots of x3 ⊕ 2x2 ⊕ 6x ⊕ 11 ?

A1: x = 2, 4 and 5.

23 ⊕ 2 · 22 ⊕ 6 · 2⊕ 11
43 ⊕ 2 · 42 ⊕ 6 · 4⊕ 11
53 ⊕ 2 · 52 ⊕ 6 · 5⊕ 11

The minimum is attained twice.

Q2: Let K = Q(ε).
What are the roots of x3 + ε2x2 + ε6x − ε11 ?

A2:

x = ε2 − ε4 − ε6 − ε7 − 2ε8 + . . .

ε4 − ε5 − 3ε7 − 3ε8 − 16ε9 + . . .

ε5 + ε6 + 2ε7 + 5ε8 + 13ε9 + . . .
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Plane Geometry

Given a tropical polynomial f (x , y), its curve T (f ) is the set
of points (x , y) ∈ R2 where the minimum is attained twice.

Lines: f (x , y) = a� x ⊕ b � y ⊕ c
= min{a + x , b + y , c}

T (f)

(c− a, c− b)

Fact 1: Any two points span a unique line.
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Plane Geometry

Fact 2: Any two lines meet in a unique point.

Q: Does Pappus’ Theorem hold tropically?

A: No (math.AG/0306366)
Yes (math.AG/0409126)
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Quadratic Curves

f (x , y) = a� x2 ⊕ b � xy ⊕ c � y2 ⊕ d � x ⊕ e � y ⊕ f .
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Quadratic Curves
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Balanced graph with two parallel halfrays in each direction.
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Quadratic Curves

Dual to subdivided Newton triangle.

One vertex for each bounded region.

One edge connecting each pair of adjacent regions.

Rotate 180◦.
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Three Facts About Plane Curves

Through any five points in R2, there is a unique quadratic curve.

Cubic curves are elliptic curves (genus 1)

Bézout’s Theorem: Two plane curves of degree d and e
always intersect in d · e points.
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Matrices and Metrics

D =


0 d12 d13 d14

d21 0 d23 d24

d31 d32 0 d34

d41 d42 d43 0


3

1 2

4

The (i , j)-entry of the matrix Dk = D � D � · · · � D
is the length of a shortest path from i to j using ≤ k steps.

To find shortest pairwise distances in a directed graph D
with n nodes, compute the tropical matrix power Dn.
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Metrics and Tree Metrics

D is a metric if D = DT ≥ 0
and D2 = D (triangle inequalities)

D is a tree metric if it comes
from a tree with edge lengths.
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2

E.g.: d12 = 5 + 1 + 7 = 13,
d13 = 5 + 6 = 11, etc.

Q: Is every metric a tree metric?

A: No, but biologists care about those that are.
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Phylogenetics

Theorem [4 Point Condition]:
A metric D is a tree metric if and only if

−D ∈ T (dij � dkl ⊕ dik � djl ⊕ dil � djk)

for any four taxa i , j , k and l .
Proof: [ASCB, Theorem 2.34]
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D12 = 13, D13 = 11, D14 = 8, D23 = 14, D24 = 9, D34 = 9.

d12 � d34 ⊕ d13 � d24 ⊕ d14 � d23 = −22⊕−20⊕−22 = −22.

Theorem: The space of trees equals the tropical Grassmannian G(2, n).
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What Next?

Review what you have seen in this lecture:

Tropical mathematics, Mathematics Magazine 82 (2009) 163–173.

Visit the Mathematical Sciences Research Institute (MSRI)
either in person in Berkeley
or online at www.msri.org

Research Program on Tropical Geometry

August 17 to December 18, 2009

Co-organizers: Eva-Maria Feichtner, Ilia Itenberg, and Grigory Mikhalkin.
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