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MATH 170 — PROBLEM SET 8 (DUE TUESDAY MARCH 21)
SOLUTIONS BY FREDERICK LAwW

1. (B&T 10.1) (Disjunctive Constraints) Suppose that we are given m constraints ajx > b;,
t=1,...,m, but without the restriction a; > 0. Model the requirement that at least k of them
are satisfled. Assume that there exists a number f such that ajx > f for ¢ = 1,...,m and for
all feasible x.

Solution: To model this, we use the following set up: instead of multiplying b; by some binary
variable, instead we add some factor which is in turn multiplied by a binary variable. Namely,
we swap ajx > b; with aix > b; + (1 — y;)(f — b;), where y; is a binary variable which returns 1
if the ith constraint is active and 0 otherwise. If we have at least k constraints active, then at
least k of the y; will be 1 which means we are guaranteed that ajx > b; for these k indices. For
the rest we are only guaranteed a’;x > f but it could also be the case where these constraints are
satisfled as well. Thus we have modeled that at least k of these constraints are satisfied. More
succinctly, we have

ajx > by + (1 —y)(f — by)
where )70y > kand y; € {0,1} fori=1,...,m. O

2. (B&T 10.5) (Plan for a move) Suppose you are planning to move to your new house. You
have n items of size a;, j = 1,...,n, that need to be moved. You have rented a truck that has
size @ and you have bought m boxes. Box i has size b;, i+ = 1,...,m. Formulate an integer
programming problem in order to decide whether the move is possible.

Solution: We make some assumptions on the move. Firstly, we assume that we only travel with
the truck once, so we are restricted to size Q. We also assume that multiple items can be put
inside the same box as long as we do not overrun the capacity of the box, and that the items are
indivisible. Lastly, we assume the items, boxes, and truck all have positive size. We introduce
nm binary variables z;; and m binary variables y;, where z;; returns 1 when item ¢ is placed in
box j and y; returns 1 when box j is brought into the truck. For the move to be possible, we
want to put each item in a box, so Z;”:l 25 = 1for i =1,...,n. Moreover, we want to make
such that each box that is taken with us doesn’t exceed capacity, so E:.”:l a; x5 < byy;.

We note that these first two constraints actually imply that we never put an item in a box we
do not take, which would be bad. This is because if we put item i in box 7, but do not take box
J, then y; = 0 but z;; = 1 so we get a; < ZLI a;z;; < 0 which is impossible since we assumed
all the sizes were positive. Thus we have implicitly encoded the constraint that items must be
placed in boxes which are taken into the truck. Lastly, we must ensure we do not break truck
capacity > p—; byr < Q. We can formulate this all as an integer programn as follows:

minimize 1

m
subject to Z.’Eij =1 ,i=1,...,n
j=1
n
i=1

ibkyk <@

k=1
zi; €{0,1} ,i=1,...,n,andj=1,...,m
y; €{0,1} Vj

where the integer program is feasible if and only if the move is possible. =



3. (B&T 10.10) (Job shop scheduling) A factory consists ol m machines My, ..., My, and needs
to process n jobs every day. Job j needs to be processed once by each machine in the order
(]\4]'(1), N .,N[J-(m)). Machine M; takes time p;; to process job j. A machine can only process
onc job at a time, and once a job is started on any machine, it must be processed to completion.
The objective is to minimize the sum of the completion times of all the jobs. Provide an integer
programming formulation for this problem.

Solution: We construct a mixed integer program (MIP). We assume quite a lot is known about
our system. Namely, we assume that we know all the job process times on all the machines p;;.
Moreover, for every machine M} we assuine that we know a value zl’-" such that My = Z\/Ii(z:u) for
every job i. This just means that for all jobs we know the order of machines on which the job has
to be processed, and that we can go backwards from this. So given a machine My, we know the
order of every job that must be processed on this machine. Let a;; be the starting time of job i
on machine M;;y, thus a;; represents the jth processing step for the total job i. The coustraint
that a job i has to be processed first by Mj(,y, then M,y and so on can be modeled by

aij + i) < i1y Vjobsiand 7€ {1,...,m}

where py(;); is the processing time for job i at the jth processing step, on machine M;;y. This
inequality tells us that the start time for the jth step of job i plus the processing time of that
step must be less than the starting time for the (j + 1)th step, which means jobs are all processed
sequentially.

Or other constraint is a disjunctive one, which says that no machine can process more than one
job at a time, and this is where we make use of the zf that we identified earlier. Let us fix a job
i and a machine My. For any other job j, we need either a; ,» +pri < @, or a; & +prj < a; ;5.

.24 24 .2 4

This means that machine My either processes job i’s zf’th task to completion first, or does job
j’s first. Note that if we fix machine My and then range this over all different jobs ¢ and 7, this
gives us a total ordering for the jobs processed by M. Then if we range this over all machines
K, this will give us a some ordering for all jobs on all machines. More succinctly, if we keep this
XOR condition for every job, then it follows that no machine will every be processing more than
one job at a time, and all jobs get processed to completion on all machines.

In order to model this disjunctive constraint, we employ the tactics of problem (1) in this problem
set, by finding some f such that Oy zb = ok > f for all i # j jobs. Let C = Zi_]. pi; which is
the sum over all processing times on all machines. Then C serves as a "bound" on how bad our
processing time is, il we only processed one job on one machine at a time. So @; ,» —a; ,» > —C

for all ¢ # j jobs. Thus we introduce binary variables yl'“J such that

O gk = B oh 2 Pi t+ (1 - yf]) (=C — pri)

aj,z]’.‘ - a’i,z‘ih > Prj + y:?;(_c - pk‘j)

where y{‘J = 1 means that for machine M) that job i gets processed before job j, and yfj =0
means the opposite. Moreover, we must add the constraint that Yy = 1-— y}”’i for any machine
My, since if M}, processes @ before j then it cannot also process j before 1.

Lastly, in our formulation of our problem, the total time spent processing is max; ; a;; + pi(j):
the maximum of the start times for all jobs 4 and tasks i(j) plus the processing time for that



task for that job. So our MIP is
minimize rrzlz}x aij + Pigy)i
subject to  ay; +Piyyi < Gi541) Y jobsiand j e {1,...,m}

Qg% — G ok > Pri t (1- yfj) (—C —pri) Vjobsi## j and all machines My

1,27

ok = Gk > Dy + yl’fi(—O — pr;) VY jobs i # j and all machines M

2%
y:”] =1- y;»“i V jobs i # j and all machines M,
a;; >0 Vjobsiandje{l,...,m}

yfj € {0,1} V jobs i # j and all machines M}

O

4. (B&T 10.12) Let G = (N, €) be an undirected graph with n nodes. Show that G is a tree if and

only if the total number of edges is n — 1, and for any nonempty set S C N, the number of edges
with both endpoints in § is less than or equal to S| — 1.

Solution: Recall that the definition of a tree is a connected graph (undirected) with no cycles.
Suppose that G is a tree. Since G has no cycles, then we get that for any S C N nonempty, we
must have |E(S)| < [S| — 1. Otherwise, if there is some subset S so that |£(S)| > |S| then the
graph restricted to the node set S and edge set £(S) wmust contain a cycle which is impossible
since G is a tree. By the same logic, |£| must have less than n edges, otherwise G contains a
cycle. But G is connected, which means that there must exist a path between every two nodes
in the graph, so G must have n — 1 edges. If there were less than n — 1 edges, then there would
be some node which we could not connect to the rest of the graph.

Suppose that G has n — 1 edges and for any nonempty S C A then |E£(S)] < |S| — 1. We
wish to prove that G is both connected and contains no cycles. By the same logic as before,
G cannot contain cycles, since if there was a cycle in G, then we would have a collection of
nodes S where we have at least |S| edges with both end points in this subcollection, which is
impossible by our hypothesis. Thus it remains to prove that G is connected. Suppose that G is
not connected. Then we can divide G into disjoint subgraphs G1 = (M, &) and Gy = (M3, E2)
where N7 and A, partition A and likewise & and &£; partition £. Moreover, these subgraphs
are non-empty and both are unions of connected components. Since these are partitions, we
know that |N1| + [Nz = n and |€1] 4 |€2| = n — 1. But then there must exist some ¢ such that
|NVi| < |&;]- If this were not true, and [&;| < |N;| for = 1,2, then we could write

n—1—|€1| <n——|/\/1|:>|./\/1| < |€1|+1:>|N1| < |€1|

since our cardinalities are non-negative integer valued, and if one integer is strictly less than
another it is also weakly less than the other minus 1. But we also have |€;] < |Ni], so combining
inequalities we get |€1] < |€1| which is impossible. So there exists some i such that |N;] < |&]
and WLOG suppose it is 4 = 1. Now we run into trouble, since A7 C A nonempty, so by
hypothesis we must have |E(N})| < |M| — 1. But E(N,) = £, so we have both |&;] < N[ -1
and |NVi| < |&1] which means |N7| < |Ai| — 1 which is an impossibility. Therefore, G must be
connected, and so G is a tree. O

. (B&T 10.14) (The undirected traveling salesman problem) For the undirected traveling
salesman problem, prove that

Ptspcut = Ptspsub

Solution: In order to prove this, we first derive a useful equality. Consider S C N where
S # &, N. We know that the cut set is 6(S) = {{i,j} € £ : 1 € 5,5 ¢ S} and the edge set is

()



ES)={{i,j} €€ : i€ 5,7 €S} So what happens if we take the cut set of all the singletons
in the subset of nodes S7 Well each edge in the cut set will get cut once, but every edge in the
edge set will get cut twice, once on both sides. More precisely, if e € §(S) then there is a single
node 4 € S such that e € §({i}), namely the node in S which e is attached to. But if e € £(9)
then there are exactly two nodes 4,5 € S such that e € §({:}) N §({7}), namely the endpoints
of the edge e. So if we have fixed edge weights, and we compute the sum of weights on the cut
sets of the singletons in S, we get the weight of the cut set of .S, but we have double counted the
weight of the edge set of S. Therefore:

Y atzY n=y 3 =
e€d(S) e€E(S) jeSees({s})

for any way to associate weights . with edges e € £.

Now for our problem. Recall that

Zeeé[,,_?]wﬁzz. Vie N 2666“”)2’:'.:2, Vie N
Ptspcut B Eeeo'{..!?) e =2, VS C N7S 7é a , Ptspcut e Zeeé‘(.{-?) Te = |S| —1, VS C N,S 75 %)
0<z. <1, Ve & 0<z. <1, Veeé&

where both these polyhedra live in Euclidean space of dimension |A/|. To prove Pispcut  Pispsubs
suppose X € Pipeut. Then Zeé&({i}) ze = 2 for all 1 € N and for any nonempty subset S C N,
we have Zee 5(s) Te > 2. Using our equality from above, we have

242 ) < Y T +2 D Te=D) > z =25

ec&(S) ecd(S) ec&(8) JjES e€s({j})

Thus subtracting 2 from both sides and dividing by 2, it follows that >°, ce(s) Te < |8 -1, so
X € Pigpsub and Prgpout € Prspsus. To prove the opposite direction, suppose X € Pigpsub- Then
2 ecs((s) Te = 2 for all ¢ € A and for any nonempty subset S C AV, we have ZeEE(S) Ze < |S|—
Using our equality from above, we have

A5/ = D me=D, D Te— Y. Te=2 Y e <282

e€s(S) JES ecs({5}) e€o(S) ec&(S)

Canceling 2|S| on both sides and then multiplying both sides by —1, we flip the inequality and
get Y e 5(5) Te = 2. Therefore X € Pigpeut and 50 Pgpsap © Pispeut- Thus Pispeut = Prspsup.

. (B&T 11.1) Consider the integer programming problem:

maximize x; + 2x9

subject to — 3z + 4z, <4
3z 4+ 22, <11
201 — 29 <5
T1,x9 2> 0, integer

Use a figure to answer the following questions. Figure is attached at the end of the problem set.

Solution: Much of this problem involved drawing graphs and solving graphically, so this solution
was hand written. It is attached at the end of the typed problems.



7. (B&T 11.2) The goal of this exercise is to compare the optimal costs of an integer programming
problem and its linear programming relaxation. Consider the integer programming problem

minimize ¢'x
subject to Ax>b
x>0

x integer

where the entries of A, b, and ¢ are integer, and its linear programming relaxation

(2)

(b)

minimize ¢'x
subject to Ax>Db
x>0

Assume that the integer programming problem is feasible. Show that if the linear program-
ming relaxation has optimal cost equal to —oo, then the integer programming problem has
optimal cost —oo as well.

Solution: Recall that by Theorem 4.14 in Bertsimas and Tsitsiklis[1] that an LP has —oc
optimal cost if and only if there is an extreme ray of the feasible region which has negative
cost. Thus if our linear programming relaxation has optimal cost —oo, then it follows that
there is some extreme ray, an element of the recession cone of the feasible region, d such
that Ad > 0,d > 0, and ¢’d < 0. If d has rational entries, then we win. Otherwise we
perturb d by adding some e such that e; is 0 when d; is rational, and is otherwise chosen to
make d; + e; rational.Iissentially, we perturb all of the irrational coordinates in a direction
which keeps us in the recession cone, turns all irrational coordinates to rational ones, and
the perturbations are chosen small enough so that ¢/ (d +e) < 0. Once the direction is
chosen, we can choose a sufficiently small e due since QQ is dense in R, so we can keep cost
negative, stay in the recession cone, and perturb the irrational coordinates to be rational.
Once we have done the above perturbation, we now have d + e in the recession cone with
rational coordinates such that A (d+e) > 0,d+e > 0, and ¢’ (d +e) < 0. Assume that
the coordinates of d + e are in lowest terms, and choose 8 > 0 to be a multiple of all the
denominators of the coordinates. Then #(d + e) is also in the recession cone, has negative
cost, and now has integer coordinates. Since the IP is feasible, we choose some [easible
integer valued y. Then for any n € N we have y + nf(d+e) > 0, A(y +nb(d+e)) > b,
¢ (y+nl(d+e)) =cy +nbc(d + e) and most importantly y + né (d + e) has integer
coordinates. Since ¢’ (d + e) < 0, and y +né (d + e) is feasible for the IP for any n € N, we
can choose arbitrarily large n for arbitrarily small cost, so the IP has optimal cost —oco. O
Is it true that there always exists an a > 0, such that Z;p < aZpp?

Solution: No. We provide a counter example. Consider the integer program

minimize y

subject to —2x+ 3y > -3
2c +3y > 3
—4x -3y > —6
z,y>0
z,y integer

There are only two feasible solutions to this 7P: (0,1) and (0, 2). The IP is then minimized
at (0,1) with Zrp = 1. If we look at the linear programming relaxation, then the LP
relaxation is minimized at (1.5,0), so Zp = 0. Thus there does not exist an a > 0 such
that Z;p < aZ; p, since if there did exist such an a > 0 then we would have 1 < ax0=10
which is impossible. d



8. (B&T 11.3) (Cuts for mixed integer programming problems) Let

T=1(xy): Z a;T; + Zdjyj < b,x integer,x,y > 0
JEN jeJ

where N = {1,...,n} and J = {1,...,p}. Show that the inequality
1
> Layley + 757 O dovs < Lo
JEN 1= bis (6] jeJ-
is satisfied by all points of T', where J~ = {j € J : d; < 0}. Hint: Consider separately the cases
D diy;>b—|b] -1, and Y djy; <b— (b -1
jeJ jed

Solution: We consider cases as suggested by the hint. First consider the case where (x,y) € T
and ng] d;jy; > b—[b] — 1. Then

ami+b— b 1< > aw;+ Y diy; b= ajz; < [b] +1=[b]
JEN JEN Jjed JEN

Then }°;cylajlz; < [b], where now both the left and right sides are integers, since z; is
integer. But if we have strict inequality between integers, we can relax to a weak inequality
after subtracting 1 from the larger integer. So >,y |a;|z; < [b] — 1 = [b]. Moreover, since
m >1and )2 ;- djy; < 0, because dj < 0 for j € J~ and y > 0, then we have

j%;vl-ajjmj b+ LbJ EZJ_ djy; < J;VLG’JJIJ < [b]

Next we consider the case where (x,y) € T and 3, ; d;y; < b— [b] — 1. Since b~ [b] ~1 <0,
then we can express this as

> djy; <3 djy; < -1(1-b— b)) = LbJ > djy; <
Je€J~ jeJ JEJ-
Next, note that since (x,y) € T, we have

1 —b+ b 7
Z[%‘Jzﬁmj; djy; + :JFLLiJ Z i = > laslzy + ) dyy; |' 'j

JEN JEN JjeJ—

< Zajl'j-f-Zdjijb -

JEN jed
thus we have

3 lagla; + beJ 3 dyny <+ 0= 10) ﬁjgdﬂj

JEN
<b+(b—[b))(=1) = [b]

and the inequality holds. Since we have proved both cases, we have proved the validity of the
inequality when (x,y) € T. O
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