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Problem 5.3

Let B be the original optimal basis matrix where
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First, we are going to find B(§)~! since we need to check feasibility and
optimality conditions for the matrix B(8) for different values of 6. Note that
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where the vector Aj = (c1,...,cm)’. Let’s denote B~! as
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which is the inverse matrix of B, and it exists because B is an optimal basis
matrix. Since we are considering the matrix B(8) only in the context where
§ € [61,82] in which the determinant of B(4) is nonzero, we are going to say
that the matrix B(4) is invertible and most of the time we are not going to
mention the context. Let v/ = (6 0 ... 0)’ € R™. Note that
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because (aj; a1z ... @im)’ # O since B! is invertible, and the rows of B(d)
are linearly independent since B(d) is invertible. However,
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This implies that 1 4+ v'B~1 Ay # 0. Consequently, we can apply the Sherman-
Morrison formula to find B(§)~!. Thus,
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where Agv’ is the outer product of two vectors Ag and v. Note that for § = 0,
B(8)~! = B7l. Consequently, for § = 0, B(8) is an optimal basis. Let v
be a real value such that B(7) is an optimal basis. Assume, without loss of
generality, that v > 0. Since B(0) and B(y) are optimal basis, B(0)~!b > 0
and B(y)~!b > 0 since they represent feasible solutions. Note that
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where H = aj1c1+. ..+ a1mCm and (z1 ... Zp,) is the optimal solution associated
with the basis matrix B. Note that the function g;(6) = z; — ""'ﬁl"“"{ir;‘;j' o 6m1)
is a continuous real valued function since 1+ §H s 0 for any §, and we know
that g;(0) > 0 and g;(v) > 0. Let 0 < a < 7. Assume, by way of contradiction,
that g;(a) < O for some 0 < j < m. By Bolzano’s theorem, there exist two
points a1 and az between 0 and «y such that g;(a1) = gj(az) = 0 which implies
that there exists a point a; < ¢ < ag such that g7(¢) = 0 by Rolle’s theorem.
Thus,
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which implies that
.’131((1_7'1C1 + ...+ ajmcm)(l + ¢H) = H$1¢(aj161 + ...+ ajm)

If z; = 0, then B(6)"'0 = B~!b and we're done. B(§)~!b is a continuous
function of §. Moreover, if aj1¢1+...+a;m = 0, then g;(¢) = 0, and we're done.
Then from this point forward we can assume that 1 # 0 and ajic1+. . . 4-ajm # 0
which implies that we can cancel these terms in the previous equation getting
as a result
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but this is impossible. So, our hypothesis is untenable which implies that
B(6)~'6 > 0 for 0 < § < +y. In order to prove optimality conditions for B(§)~!,
we are going to do the same. First, let’s compute d' — dgg(a)B(é)_lA.
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where d is the cost vector. As you can check, d' — dlp J)B(J)_lA is
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After we got this matrix, the idea is the same. Define a function g; for each row
in the matrix defined by d’ — d3 B(6)~'A. These functions ¢'s are continuous
real valued functions. So, if one of these functions is strictly less than 0 for some
value o between 0 and « is because this function g has two zeros, and between
these two zeros there exists a zero of its derivative. After this, we just need
to check that it is impossible to find a zero of the derivative of the function g
between 0 and +.

Therefore, the subset of [d1,d2] for which B(§) is an optimal basis is also a
closed interval. |

Problem 5.8
(a)

The optimal quantity of each service set is as follows; JJP English: 0, Currier:
2, Primrose method 1: 0, Primrose method 2: 0, and Bluetail: 5. The total
profit is 102 * 2 + 89 x 5 = 649.

(b)

Increasing the pounds of clay available in 23.33 results in a revenue increase
of 23.33 x 1.429 = 33.33857. Similarly, increasing the kiln time in 5.60 hours
results in a revenue increase of 112.8008. However, increasing the pounds of
enamel and the hours dry room have no effect on revenues (the associated dual
variables are zero).

(c)

Yes. According to our previous description, increasing the pounds of clay in 20
lbs. results in a revenue increase of 20 x 1.429 = 28.58. Of course, we need to
subtract the cost of the extra 20 lbs. of elay which is 20 x 1.1 = 22. The profit
associated to the additional 20 lbs. of clay is 28.58 — 22 = 6.58.



(d)

According to Table 5.5, we can decrease the number of hours available in the
dry room by 28, and this does not have effect on the revenues. However, when
the number of hours available in the dry room decreases by 30 (2 more than the
maximal allowance), we need to consider the worst-case-scenario in order to give
a bound for the decrease in the total profit. Note that according to Table 5.3,
Currier room service set is the one that generates more profit and it is also the
one that consumes less dry room hours. Consequently, our worst-case-scenario
is precisely when we produce two less Currier room service sets which generates
a lost of 204. Therefore, the bound for the decrease in the profit is 204.

(e)

Yes, actually we compute the solution including the new constraint, and the
optimal solution is JJP English:0, Currier:1, Primrose method 1:3.5, Primrose
method 2:0, and Bluetail:4. This happens because according to Table 5.5 in-
creasing the production Primrose in 3.50 results in a revenue increase of 40.0015.

Problem 5.10
(a)

In the figure, the blue line represents the equation 1+ 2z9 = 8, and the red line
represents 1 + xo = 8 where 8 > 0. Note that the feasible set is precisely the
portion of the blue line that lies in the first quadrant. Since we are minimizing,
we need to move the line in the direction of the vector (—1, —1) without leaving
the feasible region. In this way, we find the optimal solution which is z; = 0
and x5 = §/2. Consequently, the optimal value is /2.



In the figure, the blue line represents the equation x; 4 2z, = 6, and the red line
represents 7 + @2 = 6 where 8 < 0. As you can see, the feasible set is empty
which implies that the problem is infeasible. To conclude, note that for § = 0,
the only feasible point is (0,0). Consequently, in this case the optimal value is 0.

(b)

The blue line represents the function f(6) = /2. The function is defined for
positive values of § because for § < 0 the problem is infeasible.

()

In virtue of Theorem 5.2, the set of all dual optimal solutions for § > 0 is
the set whose only element is 1/2. Indeed, 1/2 is the only subgradient of the
optimal cost function f at any point # > 0. Similarly, for § = 0, the set of
all dual optimal solutions is {p € R | p < 1/2} since these are all the vectors
that are subgradient of the optimal cost function f at 0. However, for 6 < 0
we cannot apply Theorem 5.2 since for 6 < 0 the primal problem is infeasible.



~—"We know if the primal problem ig infeasible, then the dual is either-unbounded
or infeasible. Either case the set of all dual optimal solutions is the empty set.
|

Problem 5.11

No, it is not true. Consider the following counterexample.

minimize (¢ + 6d)'z
subject to 1 + 22 =1
z1,z2 2 0.
where ¢’ = d’ = (—1/2 — 1/2). Note that the extreme points of this linear
optimization problem are 2! = (0,0), z? = (1,0), and 2% = (0,1). Consider the
function g(d) = min;—1,2,3(c + 0d)z* = min{0, —1/2 — 1/20,-1/2 — 1/26}. We
represent g(6) in the following figure.

Note that g(6) is linear for 6 € [0,2]. However, it is not the case that there exists
a unique optimal solution for 0 < # = 1 < 2. Indeed, for § = 1 the problem
has infinite optimal solutions, namely, all the points in the portion of the line
1 + z2 = 1 lying in the first quadrant. ]
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Problem 5.13 !
(a)

The initial tableau is



I T I3 T4

0 4 0 5 0
z2=|1] 2 1 -5 0
g4 = 2 -3 0 4 1

Note that o = 1 and x4 = 2 are valid initial basic variables because the second
and the fourth column are linearly independent, and their values are greater
than zero. Since the reduced costs are non-negative, our solution is optimal
which implies that the optimal cost is 0. Moreover, in virtue of Exercise 3.6
(Conditions for a unique optimum), our optimal solution is unique since the
reduced cost of every nonbasic variable is positive.

(b)
The dual is
maximize p; + 2ps
subject to 2p; — 3py < 4
—5p1 +4p2 <5
p1,p2 <0.

Note that p; = 0 and p; = 0 is an optimal solution to the dual because it is a
dual feasible solution and the cost associated to this feasible solution is 0, the
optimal cost of the primal. Consequently, applying Strong Duality we have
that (0,0) is an optimal solution ta the dual.

You can see in the figure the dual feasible set, and actually you can check that
(0,0) is indeed an optimal solution since when we move the orange line which
represents the objective function without leaving the feasible set, (0,0) is the
last point that we "touch”. The optimal solution is unique since is attained only



at (0, 0).

(c)

The idea in here is to apply a variant of parametric programming that can be
used when the vector c is kept fixed but the vector b is replaced by b+ 0d, where
d is a given vector and @ is a scalar. In this case, the zeroth column of the
tableau depends on . Whenever 6 reaches a value at which some basic variable
becomes negative, we apply the dual simplex method in order to recover primal
feasibility. So, let’s begin. We choose as a basis B the matrix formed by the
second and the fourth column of A. In this way, we obtain the initial tableau
of the dual simplex algorithm

T i) I3 T4
0 4 0 5 0
To=|1-20] 2 1 -5 0
z4=|2-30| -3 O 4 1

Note that the reduced costs are non-negative. This is consistent with the dual
simplex algorithm since we start with a dual feasible solution and we work to
achieve primal feasibility. If 1 — 26 > 0 and 2 — 36 > 0, we also have a primal
feasible solution with the same cost, and optimal solution to both problems
have been found. In particular, g(8) = 0 if 8 < 1/2 where g is the function that
represents the optimal cost as a function of #. This optimal cost is attained at
(0,1 —26,0,2 — 36). On the other hand, if 1/2 < 6 < 2/3, then z» < 0 and
x4 > 0. The row associated to x5 is the pivot row. Note that we marked with
* the pivot element. We then perform a change of basis: column Az enters the
basis and Aj exits. The new tableau is

Z1 Ty T3 T4

1-26 6 1 0 0

z3 = —15:]:26 _% __3_, 1 0
z= |2 -_Bg| I 1 o 1

In this case, if 1/2 < 6 < 14/23 < 2/3, then 3 > 0 and z4 > 0 which
implies that the optimal cost is g(6) = —1 + 26 and it’s attained at (0,0, (—1+
20)/5,14/5 — 23/56). If 14/23 < < 2/3, then z3 > 0 but x4 < 0. In this case,
A enters the basis and Ay exits. The new tableau is

T Io I3 T4

124 a1 Kil]

13-l 0 F 0 F
z3=|-1+36 [0 -3 1 -2
nn=|-2+%| 1 -3 0 -2

Note that for 14/23 < 8 < 2/3, £; > 0 and @3 > 0. Then g(6) = —13 + 124/76
for 14/23 < 6 < 2/3 and it’s attained at (—2 + 23/76,0,—1 + 12/76,0). Let
us now go back to the initial tableau and suppose that 8§ > 2/3. In this case
something interesting happens, the pivot element is —5 and we apply the dual
simplex algorithm. We obtain the second tableau which is the same as the



second tableau that we obtained before. For thissecond-tableau and 6 > 2/3, -

z4 < 0. So, we apply the dual simplex algorithm again and we obtain the
third tableau which is the same as the third tableau that we obtained before.
For this tableau and 6 > 2/3 the zero column is non-negative. Consequently,
g(8) = —13 + 124/78 for # > 2/3, and we're done. The interesting part that I
was talking about is that for this last case 8 > 2/3 we did nothing new. This
implies that this case could be analyze with the rest of the cases. |

Problem 5.15 6. 5
(a)

In Exercise 5.13 incise ¢, we had a similar situation. We wanted to find the
value of the optimal cost as a function of . Recall that the problem was

minimize 4z, + 5x3
subject to 2x1 + 2 — 5z3 =1 — 26
—3z1+4zs+x4=2-—30

Z1,T2,T3,ZL4 S 0.
The optimal cost as a function of 8 is

0 <3
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For this particular case, consider X (0,13/24) (next figure).
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In this case, X(0,13/24) is not convex, and we're done.

(b)
Assume, by way of contradiction, that when we remove the non-negativity con-
straints © > 0 from the previous problem X(0,13/24) is a convex set. Since the
intersection of two convex set is a convex set (Theorem 2.1), X(0,13/24) is
also a convex set when we impose again the non-negativity constraint. This is
a contradiction because we proved otherwise in incise a. Therefore, our hypoth-
esis is untenable.

(c)

Let f(8) = F(b* + 6d) where b* and d are fixed vectors, F' as in the book page
214, and 6 is a scalar(i.e. f represents the optimal cost as a function of the scalar
parameter 6). In the book, they proved that f(8) = maxi—1,. .(p") (b* + 6d)
where p!,...,p" are the extreme points of the dual feasible set (We are as-
suming that the matrix A has linearly independent rows). Consequently, f is
a continuous function since f is piecewise linear. On the other hand, we have
the function X (8) which is also a continuous function. X (0,t) = X(f(6)) where
0 < @ < t. Since the composition of continuous function is continuous and
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[0,¢] is path-connected, X (0,¢) is also path-connected (continuous image of a
path-connected space is path-connected). |
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