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1 Exercise 4.1

Consider the linear programming problem:

minimize 2; — x5
subject to 21 + 322 — 23+ 24 <0
321 + 19 +4x3 — 224 > 3
-z, —To+2x3+ x4 =06
Ty S 0
xg,23 >0

Write down the corresponding dual problem.

maximize 3py + 6p3
subject to 3p; +ps —ps < —1

~p1 +4p2 +2p3 <0
2p1 +3p2 —p3 21
p1 — 2p2 +3p3 =0
p1 <0

p22>0

ps free

2 Exercise 4.2

Consider the primal problem

minimize c'z
subject to Az > b
x>0

Form the dual problem and convert it into an equivalent minimization problem. Derive a set of conditions
on the matrix A and the vectors b, ¢, under which the dual is identical to the primal, and construct an example

in which these conditions are satisfied.
Dual problem:
maximize p'b
subject to p’A < ¢
p=>0

Then converting to equivalent minimization, manipulating the constraint to mirror the format of the
primal:



minimize —p'b
subject to —p'A > —¢/
p=>0

First, we must have A be an n X n matrix in order to make the dual problem of same dimension. This
implies that —p’A > —¢/ & —A'p > —¢, so for this to be the same problem we need b = —c (which also
guarantees —p'b = ¢/z) and A = —A’, which means that A is skew-symmetric. Note that p and z already
both have the same nonnegativity constraints. Then these problems are equivalent.

For example, consider the primal below:

minimize x; — 2z + 373

subject to zg — 3 > —1
—21+3z3 > 2
T — 3(172 > 3
z>0

Then its dual is:

maximize —p; + 2p2 — 3z3
subject to —pg +p3 <1

p1—3x3 < -2
—p1+3p2 £3
p=>0

which can be transformed into:

minimize p; — 2pg + 3z3
subject to pg —p3 > —1

—p1+3z3 > 2
p1—3p2 < -3
p=>0

which is equivalent to the primal. Il

3 Exercise 4.4

Let A be a symmetric square matrix. Consider the linear programming problem

minimize ¢’z 'I r
subject to Az > ¢ (
z>0

Prove that if z* satisfies Az* = c and z* > 0, then z* is an optimal solution.

Let A be a symmetric square matrix. Suppose z* satisfies Az* = ¢ and z* > 0, then z* is an optimal
solution. Form the dual of the above linear programming problem, noting that all dimension will be identical
to the primal because A is square:

maximize p’c
subject to p’A < ¢
p=0

Let px = x*; then clearly px = z% > 0. Then coilsider px A p¥ A= Apx = Apx = Az+x = ¢
because A is symmetric (thus A = A’) and square. Thus px is a feasible solution. Then we can see that
czx = ' ¢ = p+' ¢, so the objective functions of the primal and the dual take on equivalent values for
solutions z*, p* respectively. Thus by Corollary 4.2, z* is an optimal solution.



4 Exercise 4.5

Consider a linear programming problem in standard form and assume that the rows of A are linearly
independent. For each one of the following statements, provide either a proof or a counterexample.

(a) Let z* be a basic feasible solution. Suppose that for every basis corresponding to z*, the associated
basic solution to the dual is infeasible. Then, the optimal cost must be strictly less than c'z*

True; by Weak Duality, since z* is feasible we know that p'b < Jdz*. If there is no feasible associated
basic solution to the dual, we know that z* is not the optimal solution and thus there is no p such that
p'b = c'z*. However, there is some optimal cost which will be equal to the optimal cost in the dual. The
associated dual optimal solution must be feasible, so we have that for some p, optimal cost = p'b < 'z*.

(b) The dual of the auxiliary primal problem considered in Phase I of the simplex method is always feasible.
True; the whole purpose of the primal auxiliary problem is to create a problem that is always feasible.
Since it is feasible and its optimal cost is bounded by 0, then we must have that the dual is also feasible.

(c) Let p; be the dual variable associated with the ith equality constraint in the primal. Eliminating the ith
primal equality constraint is equivalent to introducing the additional constraint p; = 0 in the dual problem.

True; Let aiz = b; be the ith inequality constraint. Removing it frees p;, but also removes p; from the
cost function. The same result occurs if you set p; = 0.

(d) If the unboundedness criterion in the primal simplex algorithm is satisfied, then the dual problem is

infeasible.
True; if the unboundedness criterion in the primal simplex algorithm is satisfied, then the optimal cost is

—o00. From the Weak Duality Theorem, this implies that for any feasible solution to the dual p, pb<dr=
—oo. This is impossible, and thus the dual problem has no feasible solutions. M

5 Exercise 4.6 (Duality in Chebychev approximation)

Let A be an m X n matrix and let b be a vector in R™. We consider the problem of minimizing || Az — b|s
over all z € R™. Here || - ||oo is the vector norm defined by |[yllcc = mazilyi|. Let v be the value of the

optimal cost.

(a) Let p be any vector in R™ that satisfies S Ipil <1 and p’A = 0. Show that p'b < v.

Let y = Az — b. This implies that Az =y —b & p'Az = p'(y —b) & p'y = p’b. Then consider [p'y|;
since Y ;v |p;| < 1, the upper bound of this is the maximum value of y, which we were given from the
beginning to be v, because no weighted sum of smaller numbers will ever be larger than a larger number.
Thus v > |p'y| = |p'bl, so p'b < v. B

(b) In order to obtain the best possible lower bound of the form considered in part (a), we form the linear
programming problem

maximize p'b
subject to p’A =0’
Yisilml <1

Show that the optimal cost in this problem is equal to v.
This is in fact the dual to our original problem:

minimize ||Az — b||cc =V
x free



Thus the optimal cost of the dual is the same as the primal, from the Strong Duality Theorem. Thus v
is the optimal cost in this problem.

6 Exercise 4.12 (Degeneracy and Uniqueness - I)

Consider a general linear programming problem and suppose that we have a nondegenerate basic feasible
solution to the primal. Show that the complementary slackness conditions lead to a system of equations for
the dual vector that has a unique solution.

Consider the general linear programming problem below, with both primal and dual:

Primal

minimize ¢’z

subject to a;z > b;, Vi€ My
aé:c < b;, Vi € My
aiz = b, Vi€ M;
T; >0, Vj € Ny
T <0, Yj € Ny
z; free, Vj € N;

Dual

maximize p'b
subject to p; > 0, Vi € M;
- p: <0, Vi € My
p; free, Vi € Ms
PAj<c¢;, VieEN
p'4j>c;, VjeEN;
p’Aj = ¢j, V7 € Ns

Let z be a nondegenerate basic feasible solution to the primal. Thus by definition of basic feasible
solution, it satisfies exactly n linearly independent active constraints, all equality constraints are active, and
all inequality constraints are satisfied. Note that this implies that the other inequality constraints are not
active and therefore are strict inequalities. Therefore, |Ms| = n.

Then suppose the complementary slackness conditions hold. That is, for some dual feasible p, we have:

pi(aéw — bi) = OV]
(c; —p'Aj)z; = OV)

Then consider ¢ € M;. We know that a;x > b;, so we must have that p; = 0. Similarly for : € M,, we
know that ajz < b;, so we must have that p; = 0. Thus p; =0 Vi € M; U M,.

Note also that z; # 0 because z is a nondegenerate solution. Thus we must have that c; =p'Aj.

Then form a matrix B from a; for ¢ € M3. B is thus an n X n matrix with linearly independent columns.
WLOG, let M3 be the first n rows of matrix A. Remembering that p; = 0 Vi € M; U Mj, this implies that
p;j=0Vj € {n,n+1,..,m}. Thus only the first n rows of A are actually used in ¢; = p'Aj, so we can write
that ¢ = r'B, where r is the first n nonzero components of p. B must be invertible because it is a square
linearly independent matrix, so we can show that v = ¢B~1. This will uniquely define p. W

7 Exercise 4.13 (Degeneracy and Uniqueness - II)

Consider the following pair of problems that are duals of each other:



minimize ¢’z
subject to Az =b
z>0

maximize p’'b
subject to p’A < ¢

(a) Prove that if one problem has a nondegenerate and unique optimal solution, so does the other.
Suppose the primal has a nondegenerate and unique optimal solution. Since the complementary slackness

conditions hold for optimal solutions, we can conclude from 4.12 that the dual has a unique optimal solution.
Further recognizing that the primal is the dual of the dual, we can say WLOG that the same result

applies. B

(b) Suppose that we have a nondegenerate optimal basis for the primal and that the reduced cost for one
of the nonbasic variables is zero. What does the result of part (a) imply? Is it true that there must exist
another optimal basis?

The result in part (a) does not hold because the optimal solution for the primal must be unique. When
one of the nonbasic variables is zero, this implies we can find multiple optimal solutions and possibly another
optimal basis.

This does not imply that there must exist another optimal basis. Consider the problem of minimizing z,
subject to £2 = 3 and z > 0. Thus the set of solutions is (0,3, x3) for z3 > 0, so we have multiple optimal
solutions but only one optimal basis.

8 Exercise 4.16

Give an example of a pair (primal and dual) of linear programming problems, both of which have multiple

optimal solutions.
Primal:

minimize x1 + 2z + =3
subject to x1 +x2 =1
Zo + 23 = 1
z1,22 >0
T3 S 0

Here the only possible cost is 2, from the constraints. Thus our optimal solutions are any possible
solutions to the constraints; in particular, (1,0,1), (0,1,0), (%, %, %) are optimal solutions, so the primal has
multiple optimal solutions.

Dual:

maximize p; + po

subject top; <1

p1+p2 <2
p2>1

Clearly the maximum value for p; + ps is 2, again from the constraints. Thus we can see that (1,1) and
(0,2) and in fact many others are solutions to the dual; thus the dual has multiple optimal solutions.






