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Exercise 3.16

(2)

Since the first entry of the row vector (—cgB~b, —c5B™!) is the negative of
the current cost, it is always weakly increasing. We will show that the second
part of the row vector, —cgB™2, is strictly increasing lexicographically. Let
B be the new basis matrix after the iteration and c be the corresponding
cost vector.
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Note that the coeflicient is equal to ;}l- *.(—€;), which is positive. Since B is
lexicographically positive, its rows are lexicographically positive. Therefore,
—cp B! is strictly increasing lexicographically each iteration, and the row
vector (—cgB~1b, —cgB™!) is strictly increasing lexicographically.

B! is obtained by adding the multiples of the pivot rows to each rows. For
i # 1, we will add —¥ « (I th row) to the ¢ th row. If u; < 0, then clearly
we are adding a lexicographically nonnegative row vector to the row and
hence it remains lexicographically positive. If u; > 0, then by our pivot
rule, 2 * (I th row) 2 & * (i throw) ¢ (i th row) — % * (I th row) 3o,
Again, the rows remain lexicographically positive. For the [ th row, since
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we obtain it by dividing the original row by u;, which is positive, it is still
lexicographically positive. Therefore, B~! remains lexicographically positive
through out the algorithm.

(c) Since the row vector (—caB~1b, —czB™1) is strictly increasing lexicograph-
ically and it has a 1-1 correspondence with the basis matrix, the simplex
method will not cycle and terminate in finite steps.

Exercise 3.17 Auxiliary problem:

minimize Te + T7 + Tg
1 + 3xs +4zy + x5 + T4 =
subject to T1 + 2% — 34 + T5 + xy =
—z7 — 429 + 33 +z5=1

T1y+00, T8 20

Phase I: Start with a bfs (0,0,0,0,0,2,2,1).

5|1 -1 3 -1 2000
z¢ 2|1 3 0 4 1 1 00
zz 21 2 0 -3 1 010
zg 1|-1 4 3 0 0 0 0 1

Choose z3 to enter the basis and z3 exit.
42 <5 0 -1 -2 0 01
zg 2| 1 3 04 1100
zr 2| 1 2 0 -3 1 010
gz 3|-3 -2 1 0 00 3

Choose z; to enter the basis and z¢ exit.
0|0 1 0 7 0 2 01
zz 2|1 3 0 4 1 1 0 O
zz 0/0 -1 0 -7 0 -1 1 0
1 4 1 1 1
z3 110 -3 1 3 3 35 0 3

Now drive z7 out of the basis and let x5 in.
0fo 00 0 01 1 1
z 2|1 0 0 -17 1 -2 3 O
zz 0|0 1 0 7 0 1 -1 O
1 1 1
zg 1{0 01 § 3 § -3 3
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We finally obtain a bfs for the original LP and its associated tableau. We can go
to Phase II:

-7{0 00 3 -5
I 2 1 0 O -17 1
zz 0|0 1 0 7 O
xzg 1[0 0 1t & 3
Choose z5 to enter the basis and z; to exit.
3|5 00 -8 0
s 2|1 0 0 -17 1
zz 0|0 1 0 7 O
z3 3|-3 01 2 0
Choose z4 to enter the basis and zo to exit
315 2 00 0
gz 2| 1 ¥ 0 0 17
zg 0 0 1 O 1]
s fl-4 412 0

The optimal cost is 3 and the corresponding optimal solution is (0,0, §,0, 2).

Exercise 3.19

(a) Since &, is negative, the current bfs must be degenerate so as to be optimal.
Also, § must be positive and satisfies & +§'y = 0 to ensure the optimality after
the change of basis. We conclude that a =1, =0,y=-3,6 =2,p=21is
a possible choice of parameter values.

(b) If §,a,7 < 0, then the optimal cost will be —oo. We conclude that o =
-1,8=1,7v=-1,6 = —1,9 = —1 is a possible choice of parameter values.

(c) If 8,8 > 0, then the current solution is feasible but not optimal. We conclude
thata=1,8=1,v =1, = 2,17 = 1 is a possible choice of parameter values.

Exercise 3.20

(a) We just need to ensure the current solution is feasible. Thus, the ranges of
values are: «,v,6,7,&, € R, 82 0.

(b) If B < 0, @ > 0, then the current solution is infeasible, and all feasible
direction cannot drive z, to be positive. Thus, the ranges of values are:
7,606 ER, 8<0,a20.

(¢) If B > 0, then the current solution is feasible. If at least one of 4,7,§ is
negative, then the current basis is not optimal. Thus, the ranges of values
are: v,46,£, € R with at least one of them negative, 8 > 0,,n € R.
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(d)

If 8 > 0, then the current solution is feasible. Analyzing all the possibilities,
we have found that the only way to ensure a —oo optimal cost after one
iteration is to let v < 0, §,& > 0. If the third row is the pivot row, then we
can never make a negative column. In other words, we need the second row
to be the pivot row, which means > %. Only the fourth column is possible
to be negative, and we need a < 0, § + 2% < 0 to guarantee that. Thus, the

. 4 2
ranges of values are: 7,0 <0, §,§,62>0,n>3, 6+ _,;l < 0.

If 8 > 0, then the current solution is feasible. xg is a candidate for entering
the basis if v < 0. If x; leaves the basis when z¢ entering, then % < % &

n > %. Thus, the ranges of values are: o,4,£,€ R, >0, v <0, n> 531-.

z7 is a candidate for entering the basis if £ < 0. Since the solution and
objective value remain unchanged after z; entering, the current solution is
degenerate. That said, § = 0. Thus, the ranges of values are: «,4,v,n € R,
B=0, £<0.

Exercise 3.22

(2)

If b = 0, clearly it is feasible. Assume b > 0. Consider the auxiliary problem:
minimize Y
subject to Z a;T; +y=2>b

i=1

Tl ooy T,y =0
The original LP is infeasible iff y;, 7# 0. The Phase I tableau is

b I —a -Gy ... —a, 0
y b | ay ag o0 An, 1
From the tableau, we can see that y = b is the optimal solution iff a; < 0 for
all i = 1,...,n. Therefore, we conclude that our criteria for feasibility is as
follows:

e If b = 0, then the LP is feasible.

e If b > 0(< 0), then the LP is feasible iff 35 € {1,...,n} such that
a; > 0(< 0 respectively).

Since the optimal cost is finite, there is a bfs that is an optimal solution.
The bfs x has the form z; = 0 Vi # j,z; = ;b; for some j € {1,...,n}.
Therefore, we would like to choose j = argmin {%|aj #£0,j=1,... ,n}.

J
For j with a; = 0, if ¢; < 0, then we can have —oo cost which con-

tradicts our assumption. If ¢; > 0, then we will always make a; = 0
so we can ignore it. We conclude that our method that chooses z; with

j = arg min{z—ﬂaj #0,j= 1,...,n} as our basic variable will yield the

optimal solution.



Exercise 3.26 Let our original LP and the big- M auxiliary problem be as follows

(a)

m
minimize c'x minimize c¢x+ M Z Yi
i=1
subject to Ax=Db subject to Ax+y=Db
x>0 X,y =0

Assume otherwise x is not an optimal solution to the original LP. Then
there exists an x* € R"™ in the feasible set of the original LP such that
c’x* < c’x. Note that (x*,y) is a feasible solution to the big-M problem
because y = 0. Thus, we have ¢'x*+M 3" 4 > 'x+M Y "y & c'x* >
¢’x. Contradiction. We conclude that x is an optimal solution to the original
LP.

Assume otherwise the original LP is feasible. Then there exists an x* € R™
that is a bfs to the original LP. Consider the R**™ vector (x*,0). It is clearly
a bfs to the big-M problem with cost ¢’x*. Note that ¢'x* < ¢'x+M > " v
because y # 0 and M is big enough. This implies that the simplex method
would not terminate with (x,y). Contradiction. We conclude that the
original LP is infeasible.

When the simplex method terminated, it has discovered a feasible direction
d = (dy,dy) such that d > 0 with at least one entry positive and c'dy +
MY ", d, < 0. We will show that dy = 0. Assume otherwise there is a
i € {1,...,m} with g, > 0. Then c'dx + M >_* d,, > c'dx + My; > 0
as M is big enough. Contradiction. Thus, d, = 0. We will now proof our
main result by contradiction again. Assume otherwise the original LP is
feasible and has finite optimal cost. Let (x*,y*) be the optimal solution to
the original LP and (x,y) be the bfs associated with d. Since dy = 0, we
have A(x+d,)+y=b & Ad,=b—- (Ax+y)=0. Thus, dy is also a
feasible direction at x*. Since dy = 0, we have dx > 0 and c'dx < 0. In other
words, d is a positive cost-reducing feasible direction at x*. Contradiction.
Therefore, the original LP is either infeasible or its optimal cost is —oo0.

Infeasible LP and corresponding big-M problem:

minimize Ty — To + T3 minimize Ty — Ty + ©3 + My, + My,
—r1—x23=1 —xy — 3+ =1
subject to e subject to i
2z, +x3=1 —2z + x3 Fy=1
%1, T3, 73 2 0 Ty, Ta,T3,Y1,Y2 > 0

The simplex tableau is

—2M |1+3M -1 1 0 0
w1 A 0.1 10
v 1 2t 110 1 0n1




We can see that the second column indicates a positive cost-reducing feasible
direction. However, the original LP is infeasible.
LP with —oo aptimal cost and corresponding big-M problem:

minimize — ] — g minimize — T — T3+ My,
subject to 1 —xz9 =1 subject to zy—z2+y1 =1
Ty, T2 2 0 Zy, %2, % 2 0

The simplex tableau is

-M|-1-M 14M 0 _ 1[0 -2 1+M

w' 1 |1 45 zm 1)1 -1 1

We can see that the second column of the last tableau indicates a positive
cost-reducing feasible direction, and the original LP has —oo optimal cost.

Exercise 3.28 z; < U Vi =1,...,n = Y z; < U. Introduce a new
variable £,y > 0 such that Z:‘:ll z;=U. Let # =% Vi€{l,...,n+1}. Then
Stli; =1. Let & = (Uey,Ucy,...,Ucy,0), A=[A 0] and b= 2b. Now the
LP problem is reformulated as ‘

~pe

minimize cx
subject to A% =b
n+1
Zf{ = 1
i=1
%20

Since the convexity constraint was derived from the description of the feasible set
and we simply rescaled’ the variables, this problem is equivalent to the original
one.

Exercise 3.29 Without loss of generality, let the m+1 basic points be {(A;, ¢;)|7 =
1,...,m+1}. Assume otherwise they are affinely dependent. Then the R™*+! vec-
tors (A1 — Amt1,C1 — Cmt1)y - -+ » (Am — A1, Cm — Cm+1) are linearly dependent.
There are scalers a,,...,a, € R, not all 0, such that

m

D ai(Ai = Amy1, G = Cmy1) = 0

i=1

= iaiAi - (iai) Ap=0
=1 =1
= iai(Ai,l) - (i a,-) (Api1,1) =0

i=1 i=1

The last equation implies that the column vectors (A;, 1)'s are linearly dependent.
Contradiction. Therefore, the m + 1 basic points are affinely independent.
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Exercise 3.30 Without loss of generality, let the m+1 basic points be {(A;, ¢;)}i =
1,...,m+ 1} and B be the associated basis matrix. Choose a point (A;,¢;). In
order to calculate the vertical distance from this point to the dual plane, we have
to find its vertical projection into the dual plane, say (A;, c;). Since (A, c}) is on
the dual plane, there are scalars Ay, ..., Apy1 € [0,1] such that z:':;l Xi(Aq, ) =
(Aj,¢}) and 32" A; = 1. We can solve the equation BA = (A;,1)7 to find A.
Since B is invertible, we immediately obtain our solution A = B~1(A;,1)T. Then

Al A2 Am+1 B_1 Aj _ Aj
€1 € ... Cm4t 1 c;-‘

Im Omx]_ AJ = Aj
ciB! 1 ¢

= c=cgB (A, 1)T

Therefore, the vertical distance from the dual plane to (A}, ¢;) is: ¢;—c§B™1(A;,1)T
which is the reduced cost of z; as desired.
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