MATH 170 – PROBLEM SET 3 (DUE TUESDAY FEBRUARY 7) SOLUTIONS BY FREDERICK LAW

1. (B&T 2.18) Consider a polyhedron $P = \{ \mathbf{x} : \mathbf{A}\mathbf{x} \ge \mathbf{b} \}$. Given any $\varepsilon > 0$, show that there exists some $\overline{\mathbf{b}}$ with the following two properties: (a) The absolute value of every component $\mathbf{b} - \overline{\mathbf{b}}$ is bounded by ε . (b) Every basic feasible solution in the polyhedron $P = \{ \mathbf{x} : \mathbf{A}\mathbf{x} \ge \mathbf{b} \}$ is nondegenerate.

Solution: Intuitively, we shall find such a \overline{b} by first identifying excessive constraints and perturbing the necessary constraints by some ϵ . That is, if $P=H_1\cap\cdots\cap H_m$, where H_j are the half-spaces whose intersection gives us P, then we identify those H_j which are unnecessary in defining P. If H_j is excessive, then P is well defined apart from H_j , which means that $\bigcap_{k\neq j} H_k = P$. Let M be the set of all indices of excessive half-spaces. Then $P=\bigcap_{k\notin M} H_k$, that is, we can remove all the half-spaces of M and still get the same polyhedron. This is true just because of our construction, since all the half-spaces removed are excessive. If $H_j=\{\mathbf{x}\in\mathbb{R}^n: a_j'\mathbf{x}\geq b_j\}$, then let $H_k'=\{\mathbf{x}\in\mathbb{R}^n: a_k'\mathbf{x}\geq b_j-\varepsilon\}$. Let $\overline{\mathbf{b}}$ be defined by:

$$\overline{\mathbf{b}} = \begin{cases} b_j & j \notin M \\ b_j - \varepsilon & j \in M \end{cases}$$

Then our new polyhedron is $P' = \bigcap_{k \in M} H_k \cap \bigcap_{j \in M} H'_j$. Note that in P, the degenerate basic feasible solutions can be interpreted as having too many hyperplanes, boundary of half-spaces, touching at that point. For example, on a cube in three dimensions, all the points are non-degenerate as they all have 3 hyperplanes touching them, the three facets that connect at a corner. Moreover, every facet of a polyhedron is not excessive, since it serves as a boundary of the polyhedron. Thus, we can interpret the excessive constraints as half-spaces whose hyperplane boundary either touches the polyhedron only at some degenerate solution or at not degenerate solution. Therefore, by perturbing these outward by ϵ , we remove all the degeneracy from our basic feasible solutions. Thus all the basic feasible solutions in P' are nondegenerate. Also, since we have only perturbed the excessive half-spaces by ϵ , it follows that by construction $|\overline{b}_i - b_i| \leq \epsilon$ for all i.

2. (B&T 2.21) Suppose that Fourier-Motzkin elimination is used in the manner described at the end of Section 2.8 to find the optimal cost in a linear programming problem. Show how this approach can be augmented to obtain an optimal solution as well.

Solution: To get an optimal solution using the Fourier-Motzkin elimination, we first find the optimal solution. This is done by extending our LP by one variable x_0 , so we get a new polyhedron in \mathbb{R}^{n+1} defined by $\{(x_0,\mathbf{x}):\mathbf{x}\in P,\mathbf{c}'\mathbf{x}=x_0\}$. Then we use the Fourier Motzkin elimination to project onto the first variable, which gives us $\{x_0\in\mathbb{R}:\exists\mathbf{x}\in P \ s.t.\ \mathbf{c}'\mathbf{x}=x_0\}$. Then we minimize over this subset of \mathbb{R} to find our optimal cost, call this c^* . To get an optimal solution, we really just project back upwards on n dimensions, by inverting the Fourier Motzkin algorithm. Moreover, to save time in our algorithm, we really only need to project upwards starting at c^* . That is, if we imagine our entire process as a mapping $\Phi: P \to \mathbb{R}$ where $\mathbf{x} \in P$ gets sent to $\mathbf{c}'\mathbf{x}$, then we take the preimage over c^* which is just the level set $\Phi^{-1}(c^*)$ and see what points lie on the level set. This is also the same as taking the plane $\{\mathbf{x} \in \mathbb{R}^n: \mathbf{c}'\mathbf{x}=c^* \text{ and finding where this hyperplane intersects } P$.

- 3. (B&T 2.22) Let P and Q be polyhedra in \mathbb{R}^n . Let $P + Q = \{\mathbf{x} + \mathbf{y} : \mathbf{x} \in P, \mathbf{y} \in Q\}$.
 - (a) Show that P + Q is a polyhedron. Solution: Let us define M as $M = \{(\mathbf{z}, \mathbf{x}, \mathbf{y}) : \mathbf{x} \in P, \mathbf{y} \in Q, z = \mathbf{x} + \mathbf{y}\}$. If P is constructed with n_1 linear constraints and Q is constructed with n_2 linear constraints, then M is constructed with $n_1 + n_2 + n$ linear constraints, where n of them come from

 $\mathbf{z} = \mathbf{x} + \mathbf{y}$ component wise. Therefore since M is constructed using linear constraints, M is a polyhedron in \mathbb{R}^{3n} . Then we use Fourier-Motzkin elimination to reduce to the first n coordinates: $\Pi_n(M) = \{\mathbf{z} \in \mathbb{R}^n : \exists \mathbf{x} \in P, \mathbf{y} \in Q \text{ s.t. } \mathbf{x} + \mathbf{y} = \mathbf{z}\}$. This can be rewritten as $\Pi_n(M) = \{\mathbf{x} + \mathbf{y} \in \mathbb{R}^n : \mathbf{x} \in P, \mathbf{y} \in Q\} = P + Q$. By the Fourier-Motzkin elimination algorithm, we know that $\Pi_n(M)$ is a polyhedron, and thus P + Q is a polyhedron. \square

(b) Show that every extreme point of P+Q is the sum of an extreme point of P and an extreme point of Q.

Solution: Suppose not. Then there exists $\mathbf{x} + \mathbf{y}$ which is extreme in P + Q but either \mathbf{x} is not extreme in P or \mathbf{y} is not extreme in Q or both. WLOG, suppose that \mathbf{x} is not an extreme in P, \mathbf{y} may or may not be extreme in Q. Since \mathbf{x} is not extreme in P then that means there exists $\mathbf{z}, \mathbf{z}' \in P$, $\lambda \in [0, 1]$ such that $\mathbf{x} \neq \mathbf{z}$ and $\mathbf{x} \neq \mathbf{z}'$ and $\mathbf{x} = \lambda \mathbf{z} + (1 - \lambda)\mathbf{z}'$. Then we have

$$\mathbf{x} + \mathbf{y} = \lambda \mathbf{z} + (1 - \lambda)\mathbf{z}' + \mathbf{y} = \lambda(\mathbf{z} + \mathbf{y}) + (1 - \lambda)(\mathbf{z}' + \mathbf{y})$$

But now we have written x+y as a convex combination of $\mathbf{z}+\mathbf{y}$ and $\mathbf{z}'+\mathbf{y}$, where $\mathbf{x}+\mathbf{y} \neq \mathbf{z}+\mathbf{y}$ and $\mathbf{z}'+\mathbf{y}$, since $\mathbf{x} \neq \mathbf{z}$ and $\mathbf{x} \neq \mathbf{z}'$. Therefore $\mathbf{x}+\mathbf{y}$ is not an extreme point. This is a contradiction, so we are done.

- 4. (B&T 3.2) (**Optimality conditions**) Consider the problem of minimizing $\mathbf{c}'\mathbf{x}$ over a polyhedron P. Prove the following:
 - (a) A feasible solution \mathbf{x} is optimal if and only if $\mathbf{c'd} \geq 0$ for every feasible direction \mathbf{d} at \mathbf{x} . Solution: First we prove the forward direction. Suppose that \mathbf{x} , a feasible solution, is optimal. Then it follows that $\forall \mathbf{y} \in P$, $\mathbf{c'x} \leq \mathbf{c'y}$. Suppose \mathbf{d} is an arbitrary feasible direction at \mathbf{x} . Then there exists $\theta > 0$ such that $\mathbf{x} + \theta \mathbf{d} \in P$. Then $\mathbf{c'x} \leq \mathbf{c'(x + \theta d)} = \mathbf{c'x} + \theta \mathbf{c'd}$. Thus $\theta \mathbf{c'd} \geq 0$, and since $\theta > 0$, we divide by θ and get $\mathbf{c'd} \geq 0$.

(b) A feasible solution \mathbf{x} is the unique optimal solution if and only if $\mathbf{c}'\mathbf{d} > 0$ for every nonzero feasible direction \mathbf{d} at \mathbf{x} .

Solution: Our argument will be similar to that in part (a). First we prove the forward direction. Suppose that \mathbf{x} , a feasible solution, is unique optimal. Then this means that for any $\mathbf{y} \in P$ such that $\mathbf{y} \neq \mathbf{x}$, then $\mathbf{c}'\mathbf{x} < \mathbf{c}'\mathbf{y}$. Let \mathbf{d} be any nonzero feasible direct at \mathbf{x} . Then there exists $\theta > 0$ such that $\mathbf{x} + \theta \mathbf{d} \in P$. Since $\theta > 0$ and $\mathbf{d} \neq 0$, then it follows that $\mathbf{x} \neq \mathbf{x} + \theta \mathbf{d}$. Therefore $\mathbf{c}'\mathbf{x} < \mathbf{c}'(\mathbf{x} + \theta \mathbf{d}) = \mathbf{c}'\mathbf{x} + \theta \mathbf{c}'\mathbf{d}$. Subtracting $\mathbf{c}'\mathbf{x}$ from both sides and dividing by $\theta > 0$, it follows that $\mathbf{c}'\mathbf{d} > 0$.

Now we prove the backward direction. Suppose that $\mathbf{c}'\mathbf{d} > 0$ for any nonzero feasible direction at \mathbf{x} . Let $\mathbf{y} \in P$ be an arbitrary point such that $\mathbf{y} \neq \mathbf{x}$. Since $\mathbf{y} \neq \mathbf{x}$, then $\mathbf{d} = \mathbf{y} - \mathbf{x} \neq \mathbf{0}$. Using $\theta = 1$, then $\mathbf{x} + \theta \mathbf{d} = \mathbf{y} \in P$, so \mathbf{d} is a feasible, nonzero, direction at \mathbf{x} . Therefore it follows that $\mathbf{c}'\mathbf{d} > 0$. Thus $\mathbf{c}'(\mathbf{y} - \mathbf{x}) = \mathbf{c}'\mathbf{y} - \mathbf{c}'\mathbf{x} > 0$. And thus it follows that $\mathbf{c}'\mathbf{y} > \mathbf{c}'\mathbf{x}$. Since \mathbf{y} was any point in P not equal to \mathbf{x} , it follows that \mathbf{x} is the unique optimal solution. This proves the equality.

5. (B&T 3.3) Let \mathbf{x} be an element of the standard form polyhedron $P = {\mathbf{x} \in \mathbb{R}^n : \mathbf{A}\mathbf{x} = \mathbf{b}, \mathbf{x} \geq \mathbf{0}}$. Prove that a vector $\mathbf{d} \in \mathbb{R}^n$ is a feasible direction at \mathbf{x} if and only if $\mathbf{A}\mathbf{d} = \mathbf{0}$ and $d_i \geq 0$ for every i such that $x_i = 0$.

Solution: We first prove the forward direction. Suppose that **d** is feasible at **x**. Then there exists $\theta > 0$ such that $\mathbf{x} + \theta \mathbf{d} \in P$. This means $\mathbf{A}(\mathbf{x} + \theta \mathbf{d}) = \mathbf{A}\mathbf{x} + \theta \mathbf{A}\mathbf{d} = \mathbf{b}$. Since $\mathbf{x} \in P$, then

 $\mathbf{A}\mathbf{x} = \mathbf{b}$, thus subtracting **b** from both sides, and dividing by $\theta > 0$, it follows that $\mathbf{A}\mathbf{d} = \mathbf{0}$. If i is an index such that $x_i = 0$, and since $\mathbf{x} + \theta \mathbf{d} \ge 0$, then $x_i + \theta d_i = \theta d_i \ge 0$. Dividing by $\theta > 0$, it follows that $d_i \ge 0$ for any index i such that $x_i \ge 0$.

Now we prove the backward direction. Suppose $\mathbf{d} \in \mathbb{R}^n$ such that $\mathbf{Ad} = \mathbf{0}$ and $d_i \geq 0$ for any index i such that $x_i = 0$. Let us choose θ^* satisfying

$$0 < \theta^* < \inf \left\{ -\frac{x_j}{d_j} : x_j > 0, d_j < 0 \right\}$$

Since $\mathbf{x} \in P$, then $x_i \geq 0$ for all i. If $x_i = 0$, then $x_i + \theta d_i = \theta d_i \geq 0$, since $d_i \geq 0$ and $\theta > 0$. If $x_i > 0$, there are two cases. If $d_i \geq 0$, then $x_i + \theta d_i \geq 0$. If $d_i < 0$, then $\theta^* < -\frac{x_i}{d_i}$, and multiplying through by $d_i < 0$, we get $\theta^* d_i > -x_i$ and thus $x_i + \theta^* d_i \geq 0$. Thus $\mathbf{x} + \theta^* \mathbf{d} \geq \mathbf{0}$. Also, $\mathbf{A}(\mathbf{x} + \theta^* \mathbf{d}) = \mathbf{A}\mathbf{x} + \theta^* \mathbf{A} \mathbf{d} = \mathbf{A}\mathbf{x} = \mathbf{b}$ since $\mathbf{x} \in P$. Thus it follows that $\mathbf{x} + \theta^* \mathbf{d} \in P$. This proves the equality, and we are done.

6. (B&T 3.5) Let $P = \{ \mathbf{x} \in \mathbb{R}^3 : x_1 + x_2 + x_3 = 1, \mathbf{x} \geq \mathbf{0} \}$ and consider the vector $\mathbf{x} = (0, 0, 1)$. Find the set of feasible directions at \mathbf{x} .

Solution: We find the set of feasible directions by working with the definition of feasible directions. We say that \mathbf{d} is feasible at \mathbf{x} if there exists some $\theta > 0$ such that $\mathbf{x} + \theta \mathbf{d} \in P$. Let $\mathbf{d} = (d_1, d_2, d_3)$. Then $\mathbf{x} + \theta \mathbf{d} = (\theta d_1, \theta d_2, 1 + \theta d_3)$. To require this to be in P, we need that $\theta(d_1 + d_2 + d_3) + 1 = 1$, which means $d_1 + d_2 + d_3 = 0$, and thus $d_3 = -d_1 - d_2$. We also require d_1, d_2 to be non-negative, since then for any $\theta > 0$, $\theta d_1, \theta d_2 \ge 0$. Lastly, we shall require $1 + \theta d_3 \ge 0$. To do this, we shall choose θ so that $1 + \theta d_3 = 0$. Then $1 = \theta(d_1 + d_2)$ and $\theta = \frac{1}{d_1 + d_2}$. Note this θ will always be positive, unless $d_1 = d_2 = 0$. But in that case, $d_3 = 0$, and $\mathbf{d} = \mathbf{0}$, which is always a feasible direction. Thus our set of feasible directions is

$$F = \{(d_1, d_2, -d_1 - d_2) : d_1 \ge 0, d_2 \ge 0\}$$

As a safe mental check, if $d_1 = d_2 = 0$, then $\mathbf{d} = \mathbf{0}$, and for $\theta = 1$, $\mathbf{x} + \mathbf{d} = \mathbf{x} \in P$. If either d_1 or $d_2 > 0$, then let $\theta = \frac{1}{d_1 + d_2} > 0$, and then $\mathbf{x} + \theta \mathbf{d} = \left(\frac{d_1}{d_1 + d_2}, \frac{d_2}{d_1 + d_2}, 0\right) \in P$, since $\frac{d_1}{d_1 + d_2} + \frac{d_2}{d_1 + d_2} = \frac{d_1 + d_2}{d_1 + d_2} = 1$, and $\frac{d_i}{d_1 + d_2} \ge 0$ for i = 1, 2.

- 7_{*} (B&T 3.6) (Conditions for a unique optimum) Let x be a basic feasible solution associated with some basis matrix B. Prove the following:
 - (a) If the reduced cost of every nonbasic variable is positive, then \mathbf{x} is the unique optimal solution.

Solution: Suppose that $\bar{c}_j > 0$ for every nonbasic variable j. Let $\mathbf{y} \in P$ be arbitrary such that $\mathbf{y} \neq \mathbf{x}$. Then $\mathbf{A}\mathbf{x} = \mathbf{A}\mathbf{y} = \mathbf{b}$. Thus it follows that $\mathbf{A}(\mathbf{y} - \mathbf{x}) = \mathbf{0}$. Let $\mathbf{d} = \mathbf{y} - \mathbf{x}$. Then using $\theta = 1$, $\mathbf{x} + \mathbf{d} = \mathbf{y} \in P$, so \mathbf{d} is a feasible direction at \mathbf{x} and $\mathbf{A}\mathbf{d} = \mathbf{0}$. We can rewrite this as $\mathbf{B}\mathbf{d}_B + \sum_{j \in I} A_j d_j = 0$ where I is the set of nonbasic indices. Since \mathbf{B} is invertible, then $d_B = -\sum_{j \in I} \mathbf{B}^{-1} A_j d_j$. Then

$$\mathbf{c}'\mathbf{d} = \mathbf{c}'_B\mathbf{d}_B + \sum_{j \in I} c_j d_j = \sum_{j \in I} \left(c_j - \mathbf{c}'_B\mathbf{B}^{-1}A_j\right) d_j = \sum_{j \in I} \overline{c}_j d_j$$

Since $\mathbf{y} \neq \mathbf{x}$, there must exist some $j \in I$ such that $y_j \neq x_j = 0$, where $x_j = 0$ for all $j \in I$ since \mathbf{x} is a basic feasible solution. If $\mathbf{y} \in P$ such that $y_j = 0$ for all $j \in I$, then $A\mathbf{y} = B\mathbf{y}_B = \mathbf{b}$. Then $\mathbf{y}_B = -B^{-1}\mathbf{b} = \mathbf{x}_B$, and so $\mathbf{y} = \mathbf{x}$. Therefore there must exist some nonbasic index on which \mathbf{y} and \mathbf{x} disagree. Let $k \in I$ be such an index. Since $\mathbf{y} \in P$, then $y_k \geq 0$, and since $y_k \neq x_k = 0$, then $y_k > 0$. Since $y_j = 0$ for all $y_j \in I$:

$$\mathbf{c'd} = \sum_{j \in I} \overline{c}_j d_j = \sum_{j \ in I} \overline{c}_j y_j \ge \overline{c}_k y_k > 0$$

where we use the fact that $\overline{c}_j \geq 0$ for all $j \in I$ and $y_j \geq 0$ for all $j \in I$ since $\mathbf{y} \in P$. Thus we have $\mathbf{c}'(\mathbf{y} - \mathbf{x}) > 0$ and thus $\mathbf{c}'\mathbf{x} < \mathbf{c}'\mathbf{y}$. Since this holds for all $\mathbf{y} \neq \mathbf{x}$, it follows that \mathbf{x} is the unique optimal solution.

(b) If x is the unique optimal solution and is nondegenerate, then the reduced cost of every nonbasic variable is positive.

Solution: Suppose not. Then there exists an index $m \in I$, borrowing notation from part (a), such that $\overline{c}_m \leq 0$. Let **d** be the mth basic direction. We know from our results in class and in Bertsimas and Tsitsiklis that **d** is always a feasible direction at **x** since **x** is nondegenerate. Then there exists $\theta > 0$ such that $\mathbf{x} + \theta \mathbf{d} \in P$. Then

$$\mathbf{c}'\mathbf{d} = \sum_{j \in I} \overline{c}_j d_j = \overline{c}_k \le 0$$

since **d** is the *k*th basic direction, so $d_k = 1$ and $d_j = 0$ for $j \in I$, $j \neq k$. Therefore $\mathbf{c}'\mathbf{d} \leq 0$. Choosing $\theta > 0$ sufficiently small so that $\mathbf{x} + \theta \mathbf{d} \in P$, we get $\theta \mathbf{c}'\mathbf{d} \leq 0$ which implies that $\mathbf{c}'(\mathbf{x} + \theta \mathbf{d}) = \mathbf{c}'\mathbf{x} + \theta \mathbf{c}'\mathbf{d} \leq \mathbf{c}'\mathbf{x}$. But $\mathbf{x} + \theta \mathbf{d} \in P$, which means that **x** is not the unique optimal solution. This is a contradiction, which completes the proof.

8. (B&T 3.10) Show that if n - m = 2, then the simplex method will not cycle, no matter which pivoting rule is used.

Solution: Note that there is a lot of possible choices in the simplex method, thus if this fact is indeed true it, then the face that n-m=2 must do something eliminate our possible choices in directions to move when executing the simplex method. One possible explanation could be that when n-m=2, then either the polyhedron is unbounded, in which case simplex terminates at optimal cost being $-\infty$ or the polyhedron is bounded and it happens that in the polytope all the basic feasible solutions are nondegenerate, and then the simplex method on this polytope will have to terminate.