MATH 170 — PROBLEM SET 3 (DUE TUESDAY FEBRUARY 7)
SOLUTIONS BY FREDERICK Law

1. (B&T 2.18) Consider a polyhedron P = {x : Ax > b}. Given any € > 0, show that there exists
some b with the following two properties: (a) The absolute value of every component b — b
is bounded by €. (b) Every basic feasible solution in the polyhedron P = {x : Ax > b} is
nondegenerate.

Solution: Intuitively, we shall find such a b by first identifying excessive constraints and perturb-
ing the necessary constraints by some e. That is, if P = H1N: - -NHy,, where H; are the half-spaces
whose intersection gives us P, then we identify those I{; which are unnecessary in defining P.
If H; is excessive, then P is well defined apart from Hj, which means that ﬂk# Hy = P. Let
M be the set of all indices of excessive hall-spaces. Then P = ﬂkgM Hy, that is, we can remove
all the half-spaces of M and still get the same polyhedron. This is true just because of our
construction, since all the half-spaces removed are excessive. If H; = {x € R™ : a}jx > b;}, then

let Hy = {x € R™ : af,x > b; —¢}. Let b be defined by:
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Then our new polyhedron is P’ = (¢ He N (jeps Hj- Note that in P, the degenerate basic
feasible solutions can be interpreted as having too many hyperplanes, boundary of half-spaces,
touching at that point. For example, on a cube in three dimensions, all the points are non-
degenerate as they all have 3 hyperplanes touching them, the three facets that connect at a
corner. Moreover, every facet of a polyhedron is not excessive, since it serves as a boundary of
the polyhedron. Thus, we can interpret the excessive constraints as half-spaces whose hyperplane
boundary either touches the polyhedron only at some degenerate solution or at not degenerate
solution.. Therefore, by perturbing these outward by €, we remove all the degeneracy from our
basic feasible solutions. Thus all the basic feasible solutions in P’ are nondegenerate. Also, since
we have only perturbed the excessive half-spaces by e, it follows that by construction [b; — b;| < ¢
for all 4.

2. (B&T 2.21) Suppose that Fourier-Motzkin elimination is used in the manner described at the
end of Section 2.8 to find the optimal cost in a linear programming problem. Show how this
approach can be augmented to obtain an optimal solution as well.

Solution: To get an optimal solution using the Fourier-Motzkin elimination, we first find the
optimal solution. This is done by extending our LP by one variable x¢, so we get a new polyhedron
in R**! defined by {(zg,x) : x € P,¢'x = zo}. Then we use the Fourier Motzkin elimination
to project onto the first variable, which gives us {zp € R : 3x € Ps.t.c’x = zo}. Then we
minimize over this subset of R to find our optimal cost, call this ¢*. To get an optimal solution,
we really just project back upwards on n dimensions, by inverting the Fourier Motzkin algorithm.
Moreover, to save time in our algorithm, we really only need to project upwards starting at c*.
That is, if we imagine our entire process as a mapping ® : P — R where x € P gets sent to ¢'x,
then we take the preimage over ¢* which is just the level set ®~!(c*) and see what points lie on
the level set. This is also the same as taking the plane {x € R™ : ¢/x = ¢* and finding where
this hyperplane intersects P.

3. (B&T 2.22) Let P and @ be polyhedra in R™. Let P+ Q ={x+y : x€ P,y € Q}.

(a) Show that P+ @ is a polyhedron.
Solution: Let us define M as M = {(z,x,y) : x € P,y € Q,z =x+y}. f Pis
constructed with n; linear constraints and @ is constructed with n, linear constraints,
then M is constructed with ny + ng + n linear constraints, where n of them come from



Z = X +y component wise. Therefore since M is constructed using linear constraints, M
is a polyhedron in R®**, Then we use Fourier-Motzkin elimination to reduce to the first n
coordinates: (M) = {z € R” : 3x € P,y € @s.t.x+y = z}. This can be rewritten
as IL,(M) = {x+y €R" : xe€ P,y € Q} = P + Q. By the Fourier-Motzkin elimination
algorithm, we know that II,, (M) is a polyhedron, and thus P 4 @ is a polyhedron. a
Show that every extreme point of P+ (@ is the sum of an extreme point of P and an extreme
point of Q.

Solution: Suppose not. Then there exists x + y which is extreme in P + Q but either x
is not extreme in P or y is not extreme in @ or both. WLOG, suppose that x is not an
extreme in P, y may or may not be extreme in . Since X is not extreme in P then that
means there exists z,2’ € P, A € [0, 1] such that x # z and x # 2z’ and x = Az + (1 — \)z'.
Then we have

xty=X+{1-NZ+y=Mzt+ty)+(1-NZ+y)

But now we have written 4y as a convex combination of z+y and z’+y, where x+y # z+y
and z’ + y, since x # z and x # 2z’. Therefore x 4+ y is not an extreme point. This is a
contradiction, so we are done. O

4. (B&T 3.2) (Optimality conditions) Consider the problem of minimizing ¢/x over a polyhedron
P. Prove the following:

(a)

(b)

A feasible solution x is optimal if and only if ¢’d > O for every feasible direction d at x.
Solution: First we prove the forward direction. Suppose that x, a feasible solution, is
optimal. Then it follows that Vy € P, ¢’x < ¢’y. Suppose d is an arbitrary feasible direction
at x. Then there exists § > 0 such that x + 6d € P. Then ¢/x < ¢/(x + 6d) = ¢/x + 6c'd.
Thus fc’'d > 0, and since § > 0, we divide by 8 and get ¢’d > 0.

Now we prove the backward direction. Suppose that ¢’d > 0 for every feasible direction d at
X. Let y € P be arbitrary. Then let d =y — x. Then if welet § = 1, then x+6d =y € P,
50 d is a feasible direction at x and so ¢’d > 0. Thus it follows that ¢’(y — x) > 0, and so
c'y —¢/x > 0 and ¢’x < c'y. Since y was an arbitrary point in P, it follows that z is an
optimal solution. This proves the equality. O

A feasible solution x is the unique optimal solution if and only if ¢’d > 0 for every nonzero
feasible direction d at x.

Solution: Our argument will be similar to that in part (a). First we prove the forward
direction. Suppose that x, a feasible solution, is unique optimal. Then this means that for
any y € P such that y # x, then ¢’x < ¢'y. Let d be any nonzero feasible direct at x.
Then there exists # > 0 such that x 4+ 8d € P. Since # > 0 and d # 0, then it follows that
x # x+ 68d. Therefore ¢’x < ¢/(x+ 8d) = ¢’x + 0c’d. Subtracting ¢’x from both sides and
dividing by 6 > 0, it follows that ¢’d > 0.

Now we prove the backward direction. Suppose that ¢’d > 0 for any nonzero feasible
direction at x. Let y € P be an arbitrary point such that y # x. Since y # x, then
d=y—x#0. Using# =1, then x+6d =y € P, so d is a feasible, nonzero, direction at
x. Therefore it follows that ¢’d > 0. Thus ¢/(y — x) = ¢’y — ¢/x > 0. And thus it follows
that ¢’y > ¢’x. Since y was any point in P not equal to x, it follows that x is the unique
optimal solution. This proves the equality. O

5. (B&T 3.3) Let x be an element of the standard form polyhedron P = {x € R™ : Ax =b,x > 0}.
Prove that a vector d € R™ is a feasible direction at x if and only if Ad = 0 and d; > 0 for every
i such that z; = 0.

Solution: We first prove the forward direction. Suppose that d is feasible at x. Then there
exists 6 > 0 such that x + 6d € P. This means A(x 4+ 6d) = Ax+0Ad = b. Since x € P, then



Ax = b, thus subtracting b from both sides, and dividing by 6 > 0, it follows that Ad = 0. If 4
is an index such that x; = 0, and since x + #d > 0, then z; 4+ 6d; = 6d; > 0. Dividing by 6 > 0,
it follows that d; > 0 for any index i such that z;, >0

Now we prove the backward direction. Suppose d € R™ such that Ad = 0 and d; > 0 for any
index % such that z; = 0. Let us choose §* satisfying

0<o* <111f{—% sy > 0,d; <O}
Since x € P, then x; > 0 for all i. If z; = 0, then z; + 0d; = 8d; > 0, since d; > 0 and ¢ > 0.
If z; > 0, there are two cases. If d; > 0, then a; +0d; > 0. If d; < 0, then §* < —%, and

multiplying through by d; < 0, we get 8*d; > —x; and thus z; + 0*d; > 0. Thus x + 6*d > 0.
Also, A(x +6*d) = Ax+ 6*Ad = Ax = b since x € P. Thus it follows that x + ¢*d € P. This

proves the equality, and we are done. O

. (B&T 3.5) Let P = {x € R® : &1 +x2 + 23 = 1,x > 0} and consider the vector x = (0,0, 1).
Find the set of feasible directions at x.

Solution: We find the set of feasible directions by working with the definition of feasible di-
rections. We say that d is feasible at x if there exists some § > 0 such that x +-6d € P. Let
d = (d1,ds,d3). Then x + 0d = (6dy,0dy, 1 + 0d3). To require this to be in P, we need that
6(d; + dg + d3) + 1 = 1, which means d; +dz +ds = 0, and thus ds = —d; — d2. We also
require di, d; to be non-negative, since then for any 8 > 0, 6d;, 0d; > 0. Lastly, we shall requlre
1+0ds > 0. To do this, we shall choose 4 so that 1+6ds = 0. Then 1 = 8(d,+dp) and § = i +d2

Note this 8 will always be positive, unless d = d; = 0. But in that case, d3 = 0, and d = 0,
which is always a feasible direction. Thus our set of feasible directions is

F={(d,dy,—d1 — d2) : d1 >0,dy >0}

As a safe mental check, if di = dy = 0, then d = 0, and for § = 1, x+d =x € P. If
either d; or dy > 0, then let § = ﬁ > 0, and then x 4+ 0d = (ﬂld—z, ﬁzﬁ’o) € P, since

dy dy  _ dytdy _
d1+d2+d1+d2 a1 td; 1andﬁ7>0f0rl—12 O

. (B&T 3.6) (Conditions for a unique optimum) Let x be a basic feasible solution associated
with some basis matrix B. Prove the following:

(a) If the reduced cost of every nonbasic variable is positive, then x is the unique optimal
solution.
Solution: Suppose that ¢; > 0 for every nonbasic variable j. Let y € P be arbitrary such
that y # x. Then Ax = Ay = b. Thus it follows that A(y —x) = 0. Let d =y —x. Then
using @ = 1, x+d =y € P, so d is a feasible direction at x and Ad = 0. We can rewrite
this as Bdp + >,y Ajd; = 0 where I is the set of nonbasic indices. Since B is invertible,

then dg = — Zjel B_lAjdj. Then

cd= CIBdB + Zdej = Z (Cj - C’BB_lA]') dj = Zajdj
jerl jel jer
Since y # X, there must exist some j € I such that y; # z; = 0, where z; = 0 for all
j € I since x is a basic feasible solution. If y € P such that y; = 0 for all j € I, then
Ay =By =b. Then yg = —B~'b = xp, and so y = x. Therefore there must exist some
nonbasic index on which y and x disagree. Let k € I be such an index. Since y € P, then
yr > 0, and since yg # zx = 0, then y, > 0. Since d; = y; — z; and since z; = 0 for all
jel:
cdd= Zﬁjdj = Z CiYs >Cryr >0
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where we use the fact that ¢; > 0 for all j € [ and y; > 0 for all § € I since y € P. Thus
we have ¢/(y — x) > 0 and thus ¢’x < ¢’y. Since this holds for all y # x, it follows that x
is the unique optimal solution. O

{(b) If x is the unique optimal solution and is nondegenerate, then the reduced cost of every
nonbasic variable is positive.
Solution: Suppose not. Then there exists an index m € I, borrowing notation from part
(a), such that ¢, < 0. Let d be the mth basic direction. We know from our results in
class and in Bertsimas and Tsitsiklis that d is always a feasible direction at x since x is
nondegenerate. Then there exists § > 0 such that x + 6d € P. Then

cdd= szdj =¢ <0

jer

since d is the kth basic direction, so dy = 1 and d; = 0 for j € I, j # k. Therefore ¢’d < 0.
Choosing § > 0 sufficiently small so that x + 6d € P, we get 6c’d < 0 which implies that
c¢/(x+6d) = ¢’x+ 6c'd < ¢’x. But x+ f#d € P, which means that x is not the unique
optimal solution. This is a contradiction, which completes the proof. O

. (B&T 3.10) Show that if n —m = 2, then the simplex method will not cycle, no matter which

pivoting rule is usecd.

Solution: Note that there is a lot of possible choices in the simplex method, thus il this lact is
indeed true if, then the face that n—m = 2 must do something eliminate our possible choices in
directions to move when executing the simplex method. One possible explanation could be that
when n — m = 2, then either the polyhedron is unbounded, in which case simplex terminates at
optimal cost being —co or the polyhedron is bounded and it happens that in the polytope all the
basic feasible solutions are nondegenerate, and then the simplex method on this polytope will
have to terminate.



