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Exercise 2.1 (a) Consider the polar coordinate system. Let = rcost, y =rsint r >
0, t €[0,27]. Then zcosf+ysinf <1 reos(f—t)<landz>0,y>20&t€ [0, %]
Since the inequality must hold for all # € [0,%], we have r < 1. Therefore, the set
actually is a quarter of a unit circle and hence is not a polyhedron.

(b)

r<H

2 -8z+15<0 &
z>3

Thus, the set is a polyhedron of the form {z € R|z > 3, z < 5}.
(c) Empty set is a polyhedron. An example is {z € R|z > 1, 2 < 0},

Exercise 2.3 Let A be a m x n matrix, z,u € R® and b € R™. Then the polyhedron
is {x € R"| Az = b, 0 < z < u}. 'l'he procedure for finding a basic solution is as follows.
(1) Choose m linearly independent columns of A, Ag(), .- -, ABm)-

(2) Let z; = 0 or u; for all i # B(1),...,B(m).

(3) Solve Az = b for the unknown variables zg(1),...,ZB(m). Now we prove a theorem
justifying this procedure.

Theorem. Consider the constraints Az = b, £ > 0 and x < u. Assume the m x n
matriz A has linearly independent rows. A vector x € R™ is a basic solution if and only
if we have Az = b, and there exist indices B(1),..., B(m) such that:

(1) The columns Apy, - .-, Apm) are linearly independent;

(2) If i £ B(1),...,B(m), then z; =0 or u;.

Proof. Suppose x € R™ satisfies both conditions. Then we have

m
Ax = Z AB(i)mB(i) + Z Aix;=b

i=1 i#B(1),...,B(m)
m
@Z AB(i)mB(i) =b- Z A;x;
i=1 i#B(1),...,.B(m)
Since AB(I), iy A B(m) are linearly independent, this equation uniquely determine z;
for 1 = Bjy,...,By,. Thus, the system of equations formed by the active constraints

has a unique solution. By Theorem 2.2, there are n linearly independent active con-
straints. Therefore, z is a basic solution. For the converse, consider z being a basic
solution. We will show there exist indices B(1),...,B(m) satisfying both conditions.
Let B(1),...,B(k) be all indices that xp(;) # 0 and zg(;) # upg) for all i = 1,... k.
Since z is a basic solution, the system of equations formed by the active constraints
has a unique solution. (i.e. Zle Ap@TBk) = b~ Xizp),..B(r) Ai®i has a unique
solution.) This implies that Ap(),- .., Ap() are linearly independent and k < m. Since

1



rank(A)=m, we can choose m — k more columns from A to extend the family such
that Ap(), ..., Apm) are linearly independent. Moreover, if ¢ # B(1),..., B(m), then
clearly i # B(1),...,B(k) and hence z; = 0 or u;.

O

Exercise 2.4 A polyhedron in standard form has at least one extreme point because
it does not contain a line. However, this is not true for general polyhedra. For example,
the halfspace {(z,y) € R?|z 4+ y > 1} is a trivial polyhedron with no extreme point.

Exercise 2.6 (a) If n < m, then the result is trivial. Now suppose n > m. Let y € C.
Consider the polyhedron A = {(A1,...,A) € R*| 2 Mdi =y, Ar,-.., A > O}
This is a polyhedron in standard form, so by theorem there exists a basic feasible solu-
tion A* = (A],...,\;). Note that we can have at most m linearly independent vectors
out of the family A4;. Thus, a basic feasible solution has at least n —m zero components,
which means there are at most m non-zero components in A*. Thus, T 1AMA; is an
-expression of y with at most m of the coefficients being non-zero.

/(b) If n < m+1, then the result is trivial. Now suppose n > m+1. Let y € P. Consider
the polyhedron A = {(A1,..., M) € RY 2 MAi =4, Y =1, Ao hg >
0}.This is a polyhedron in standard form, so by theorem there exists a basic feasible
solution A* = (A},...,A},). Note that there are m + 1 equality constraints in the poly-
hedron, so we can have at most m + 1 linearly independent equality constraints. Thus,
the basic feasible solution have at least n — (m + 1) zero components, which means \*
has at most m + 1 non-zero components. Thus, "I ; A\f4; is an expression of y with at
most m + 1 of the coefficients being non-zero.

Exercise 2.7 Assume otherwise the vector g1,...,gx do not span R"®. Then, they
are all in a proper subspace of R®. Hence, there exists a non-zero vector d € R™ such
that d'g; =0 Vi =1,...,k. Let 29 be an element of the polyhedron represented by
{z eR*giz > hi,i=1,...,k} and {z € R"|alz > b;, i = 1,...,m}. Consider the line
To + Ad, A € R. Note that gi(zo + Ad) = glzg > h; Vi = 1,...,k. Thus, the line is
contained in the polyhedron. Hence, we have aj(z + Ad) > b;, YA € RVi = 1,...,m.
Clearly, d must be orthogonal to all the vectors a;’s. However, the vectors ay, ..., am
span R", and hence d = 0. Contradiction. We conclude that the vector g1, ..., g also
span R",

Exercise 2.9 (a) Assume otherwise the basic solution is not degenerate. Then the
basic solution have n — m zero components. This uniquely determine m non-zero com-
ponents, which correspond to a unique choice of basis. Contradiction. Therefore, a basic
solution with two different bases must be degenerate.

(b) No, a degenerate basic solution does not necessarily correspond to two different bases.
Consider the polyhedron in standard form {(z,y) € R®|z+y > 0,2-y >0 =z,y > 0}.
This is a polyhedron that contains only one point (0,0) which is also a degenerate basic
solution (all constraints are active). However, clearly there is only one choice of basis.
(c) No, it is not true. Consider the example in (b). The polyhedron contains only one
basic solution, and hence no adjacent basic solution exists.

Exercise 2.10 (a) No, it is not true. Consider the standard form polyhedron {(z,y, z) €
Rlz+y=2,y+2=1 g,y,2 > 0}. There are 3 basic solutions (2,0,1), 0,2, -1), (1,1, 0).
(b) No, it is not true. Consider the LP problem that minimize ~z +y over the stan-
dard form polyhedron {(z,y) € R?| —z+y =0, =,y > 0}. Then every point in the



polyhedron is an optimal solution, and clearly the polyhedron is not bounded.

(c) No, it is not true. Consider again the LP problem in (b). Then (1,1) is an optimal
solution with more than 1 positive variables.

(d) Yes, it is true. Let z,y be two distinct optimal solutions and d be the corresponding
optimal value. Consider the convex combination of z,y: Az+(1—=\)y, A € [0,1]. For all
Ae[0,1], Pz + (1= A)y] = Ad+ (1 — A\)d = d. Also, since the polyhedron is a convex
set, every convex combination of z,y is in the polyhedron. Thus, we have uncountably
many optimal solutions Az + (1 — A)y, A € [0,1].

(e) No, it is not true. Consider again the counterexample in (b). The polyhedron has
only one basic feasible solution but infinitely many optimal solutions.

(f) Yes, it is true. Introduce new variables z,s;,s2 € R with constraints dx+3 =
2, d'z 4+ 83 = z, and 2,81,82 > 0. Then we transform the LP problem into mini-
mizing z over a standard form polyhedron P! = {(z1,...,%n,2,51,52) € R™3| Az =
bdr+3 —2=0,dzx+s;—2=0, z,2 81,82 > 0} where z = (x1,...,%y). Note that
there are n + 3 variables and m + 2 equality constraints. Let A’ be the m+2by n+3
matrix of all equality constraints of P’. Since the matrix A has linearly independent
rows and the new constraints ¢’z + 81 — 2 = 0, d'z + s3 — 2 = 0 involve new variables
respectively, the matrix A’ also has linearly independent rows. The LP problem has an
optimal solution, so there is an extreme point ' = (z},..., 2,2/, s}, 85) of P’ that is
an optimal solution. We now claim z* = (z}, ..., 2}) € R" is an optimal solution which
is an extreme point of P. Obviously, z* € P. Note that A(n )T A(n 42) = A(n +3) 5O
we can choose at most 2 linearly independent, columns from A(“ Jrl},A(n 1oy A(n +3) when
constructing a basic solution. That said, we have to choose at least m columns from the
first n columns of A. However, we can choose at most m linearly independent columns
from the first n columns because rank(A)=m. Therefore, every extreme point of P’ has
a corresponding basis consisting m vectors from the first n columns of A’. This means
z* has a corresponding basis consisting exactly m vectors from the columns of A. Thus,
z* is an extreme point of P and clearly it is also an optimal solution to the LP problem.
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