Math 113, **First Midterm Exam** Thursday, February 18, 10:15am–11:45am

This exam is open book. You may use the text book (to which you can refer) and your own notes, but no electronic devices. Please write your answers in a blue note book. There are five problems, each worth 10 points, for a total of 50 points. Answers without justification will not receive credit. You may look at your graded exam in class on Monday, July 12.

- (1) Let G be a group of order pq where p and q are prime numbers. Show that every proper subgroup of G is cyclic. Is the group G necessarily abelian?
- (2) Compile a list of all subgroups of the alternating group A_4 and draw a subgroup diagram.
- (3) How many distinct homomorphims are there from the additive group of integers \mathbf{Z} to the cyclic group \mathbf{Z}_{20} ? How many of them are injective? How many are surjective?
- (4) The dihedral group D_5 consists of all symmetries of a regular pentagon. Find its commutator subgroup C, and determine the factor group D_5/C .
- (5) Let G be a group and consider the set $H = \{(g,g) | g \in G\}$.
 - (a) Show that H is a subgroup of $G \times G$.
 - (b) Show that H is a normal subgroup of $G \times G$ if and only if G is abelian.
 - (c) Assuming that G is abelian, show that $(G \times G)/H$ is isomorphic to G.