UC BERKELEY MATH 254A PROBLEM SET 1

Last Updated: September 10, 2014. Please let me know if you find any typos.

We will discuss these questions in class on Monday, Sept. 22nd.

- (1) Questions about integral closure:
 - (a) Show that $\mathbb{C}[x,y]/(x^2-y^3)$ is a domain which is not normal.
 - (b) Show that A is normal if and only if A[t] is normal.
 - (c) Let D be a square-free integer. Compute an integral basis for the ring of integers \mathcal{O}_K of $K = \mathbb{Q}(\sqrt{D})$. What is the discriminant of K?
 - (d) Find an integral basis for $\mathbb{Q}(\sqrt[3]{2})$. What is the discriminant of $\mathbb{Q}(\sqrt[3]{2})$?
 - (e) Let $A \subset B$ be an integral extension of rings. Let \mathfrak{p} be a non-trivial prime-ideal of B. Prove that $\mathfrak{p} \cap A$ is non-trivial, and that \mathfrak{p} is maximal if and only if $\mathfrak{p} \cap A$ is maximal.
- (2) Questions about Norms and Traces:
 - (a) Give a proof of the following proposition proved in class:

Proposition. Let M|L|K be a tower of finite seperable extensions of fields. Then $N_{M|K} = N_{L|K} \circ N_{M|L}$ and $\text{Tr}_{M|K} = \text{Tr}_{L|K} \circ \text{Tr}_{M|L}$.

- (b) Suppose that L|K is a finite separable extension. Prove that $\mathrm{Tr}_{L|K}$ is non-zero.
- (c) Let L|K be a finite extension of fields. Prove that

$$\operatorname{Tr}_{L|K}(\alpha) = [L:K(\alpha)] \cdot \operatorname{Tr}_{K(\alpha)|K}(\alpha),$$

and that

$$N_{L|K}(\alpha) = N_{K(\alpha)|K}(\alpha)^{[L:K(\alpha)]}$$
.

- (d) Suppose that L|K is a finite extension which is not separable. Prove that $\text{Tr}_{L|K} = 0$. Deduce that if M|L|K is a tower of finite (possibly non-separable) extensions of fields, then $\text{Tr}_{M|K} = \text{Tr}_{L|K} \circ \text{Tr}_{M|L}$. Can you prove similar statements about Norms?
- (e) Let K be a number field and let $a \in \mathcal{O}_K$ be given. Prove that

$$|N_{K|\mathbb{Q}}(a)| = [\mathcal{O}_K : (a)].$$

(3) Recall the following proposition proved in class:

Proposition. Let K be a number field and let $\mathfrak{a} \subset \mathfrak{a}'$ be two finitely-generated \mathcal{O}_K -submodules of K. Then $d(\mathfrak{a}) = [\mathfrak{a}' : \mathfrak{a}]^2 \cdot d(\mathfrak{a}')$.

Try to formulate and prove an analogue of this proposition for K a global function field. Hint: What is the correct analogue of $[\mathfrak{a}':\mathfrak{a}]$? What is $[\mathfrak{a}':\mathfrak{a}]\cdot(\mathfrak{a}'/\mathfrak{a})$?

- (4) Questions about Dedekind domains:
 - (a) Prove that a Dedekind domain with finitely many prime ideals is a principal ideal domain. Hint: if $\mathfrak{a} = \mathfrak{p}_1^{v_1} \cdots \mathfrak{p}_r^{v_r}$ is a non-zero ideal, choose elements $\pi_i \in \mathfrak{p}_i \setminus \mathfrak{p}_i^2$. Now consider $(\pi_i^{v_i} \mod \mathfrak{p}_i^{v_i+1})_i \in \prod_i A/\mathfrak{p}_i^{v_i+1}$ and apply the Chinese remainder theorem. (b) Suppose that A is a domain in which every non-zero ideal admits a unique factor-
 - ization as a product of prime ideals. Prove that A must be a Dedekind domain.
- (5) The absolute Norm: Let K be a number field and let $\mathfrak{a},\mathfrak{b}$ be ideals of \mathcal{O}_K . Define the **absolute norm** of \mathfrak{a} , denoted $N(\mathfrak{a})$, to be $[\mathcal{O}_K : \mathfrak{a}]$ (compare with (2)(e) above)
 - (a) Prove that $N(\mathfrak{ab}) = N(\mathfrak{a}) \cdot N(\mathfrak{b})$. Hint: write $\mathfrak{a} = \mathfrak{p}_1^{v_1} \cdots \mathfrak{p}_r^{v_r}$, with \mathfrak{p}_i distinct primes, and prove that $N(\mathfrak{a}) = \prod_i N(\mathfrak{p}_i)^{v_i}$.
 - (b) Let K be a global function field. Use your definition of $[\mathcal{O}_K : \mathfrak{a}]$ from number (3) above in the case where K is a global function field to define $N(\mathfrak{a})$ for an ideal \mathfrak{a} of \mathcal{O}_K . Can you prove that $N(\mathfrak{ab}) = N(\mathfrak{a}) N(\mathfrak{b})$?