UC BERKELEY MATH 254A PROBLEM SET 1

Last Updated: September 10, 2014. Please let me know if you find any typos.
We will discuss these questions in class on Monday, Sept. 22nd.
(1) Questions about integral closure:
(a) Show that $\mathbb{C}[x, y] /\left(x^{2}-y^{3}\right)$ is a domain which is not normal.
(b) Show that A is normal if and only if $A[t]$ is normal.
(c) Let D be a square-free integer. Compute an integral basis for the ring of integers \mathcal{O}_{K} of $K=\mathbb{Q}(\sqrt{D})$. What is the discriminant of K ?
(d) Find an integral basis for $\mathbb{Q}(\sqrt[3]{2})$. What is the discriminant of $\mathbb{Q}(\sqrt[3]{2})$?
(e) Let $A \subset B$ be an integral extension of rings. Let \mathfrak{p} be a non-trivial prime-ideal of B. Prove that $\mathfrak{p} \cap A$ is non-trivial, and that \mathfrak{p} is maximal if and only if $\mathfrak{p} \cap A$ is maximal.
(2) Questions about Norms and Traces:
(a) Give a proof of the following proposition proved in class:

Proposition. Let $M|L| K$ be a tower of finite seperable extensions of fields. Then $N_{M \mid K}=N_{L \mid K} \circ N_{M \mid L}$ and $\operatorname{Tr}_{M \mid K}=\operatorname{Tr}_{L \mid K} \circ \operatorname{Tr}_{M \mid L}$.
(b) Suppose that $L \mid K$ is a finite separable extension. Prove that $\operatorname{Tr}_{L \mid K}$ is non-zero.
(c) Let $L \mid K$ be a finite extension of fields. Prove that

$$
\operatorname{Tr}_{L \mid K}(\alpha)=[L: K(\alpha)] \cdot \operatorname{Tr}_{K(\alpha) \mid K}(\alpha),
$$

and that

$$
N_{L \mid K}(\alpha)=N_{K(\alpha) \mid K}(\alpha)^{[L: K(\alpha)]} .
$$

(d) Suppose that $L \mid K$ is a finite extension which is not separable. Prove that $\operatorname{Tr}_{L \mid K}=0$. Deduce that if $M|L| K$ is a tower of finite (possibly non-separable) extensions of fields, then $\operatorname{Tr}_{M \mid K}=\operatorname{Tr}_{L \mid K} \circ \operatorname{Tr}_{M \mid L}$. Can you prove similar statements about Norms?
(e) Let K be a number field and let $a \in \mathcal{O}_{K}$ be given. Prove that

$$
\left|N_{K \mid \mathbb{Q}}(a)\right|=\left[\mathcal{O}_{K}:(a)\right] .
$$

(3) Recall the following proposition proved in class:

Proposition. Let K be a number field and let $\mathfrak{a} \subset \mathfrak{a}^{\prime}$ be two finitely-generated $\mathcal{O}_{K^{-}}$ submodules of K. Then $d(\mathfrak{a})=\left[\mathfrak{a}^{\prime}: \mathfrak{a}\right]^{2} \cdot d\left(\mathfrak{a}^{\prime}\right)$.
Try to formulate and prove an analogue of this proposition for K a global function field. Hint: What is the correct analogue of $\left[\mathfrak{a}^{\prime}: \mathfrak{a}\right]$? What is $\left[\mathfrak{a}^{\prime}: \mathfrak{a}\right] \cdot\left(\mathfrak{a}^{\prime} / \mathfrak{a}\right)$?
(4) Questions about Dedekind domains:
(a) Prove that a Dedekind domain with finitely many prime ideals is a principal ideal domain. Hint: if $\mathfrak{a}=\mathfrak{p}_{1}^{v_{1}} \cdots \mathfrak{p}_{r}^{v_{r}}$ is a non-zero ideal, choose elements $\pi_{i} \in \mathfrak{p}_{i} \backslash \mathfrak{p}_{i}^{2}$. Now consider $\left(\pi_{i}^{v_{i}} \bmod \mathfrak{p}_{i}^{v_{i}+1}\right)_{i} \in \prod_{i} A / \mathfrak{p}_{i}^{v_{i}+1}$ and apply the Chinese remainder theorem.
(b) Suppose that A is a domain in which every non-zero ideal admits a unique factorization as a product of prime ideals. Prove that A must be a Dedekind domain.
(5) The absolute Norm: Let K be a number field and let $\mathfrak{a}, \mathfrak{b}$ be ideals of \mathcal{O}_{K}. Define the absolute norm of \mathfrak{a}, denoted $\mathrm{N}(\mathfrak{a})$, to be $\left[\mathcal{O}_{K}: \mathfrak{a}\right]$ (compare with (2)(e) above)
(a) Prove that $N(\mathfrak{a b})=N(\mathfrak{a}) \cdot N(\mathfrak{b})$. Hint: write $\mathfrak{a}=\mathfrak{p}_{1}^{v_{1}} \cdots \mathfrak{p}_{r}^{v_{r}}$, with \mathfrak{p}_{i} distinct primes, and prove that $\mathrm{N}(\mathfrak{a})=\prod_{i} \mathrm{~N}\left(\mathfrak{p}_{i}\right)^{v_{i}}$.
(b) Let K be a global function field. Use your definition of $\left[\mathcal{O}_{K}: \mathfrak{a}\right]$ from number (3) above in the case where K is a global function field to define $\mathrm{N}(\mathfrak{a})$ for an ideal \mathfrak{a} of \mathcal{O}_{K}. Can you prove that $\mathrm{N}(\mathfrak{a b})=\mathrm{N}(\mathfrak{a}) \mathrm{N}(\mathfrak{b})$?

