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1. Introduction

The objective of this paper is to provide a source of open questions in reverse mathematics and
to point to areas where there could be interesting developments. The questions I discuss are mostly
known and come from somewhere in the literature. My objective was to compile them in one place
and discuss them in the context of related work. The list is definitely not comprehensive, and my
choice of questions and topics is undoubtedly affected by my personal taste and my own research.
The idea to write this paper came about after the last two workshops in reverse mathematics: the
one in Banff in December 2008, organized by Cholak, Csima, Lempp, Lerman, Shore, and Slaman,
and the one in Chicago in November 2009, organized by Dzhafarov and Hirschfeldt. Each of these
workshops had a session on open questions where people suggested problems they liked. Then Shore
and Dzhafarov compiled the respective lists of questions into files that are now available either online
or by request. Many of the questions posed here come from those listings. Another paper on open
questions in reverse mathematics was written ten years ago by Friedman and Simpson [FS00]. There
are still some unanswered questions from that paper, and I will cite a few here.

This paper is not intended to describe the subject or explain its motivations. For the motivations
on why we do reverse mathematics and the types of results we get, I highly recommend the recent
articles by Simpson [Sim] and Shore [Shob]. These articles are written for a general logic audience,
and both motivate the subject from their respective viewpoints. For general background and extensive
results in reverse mathematics, the standard reference is Simpson’s book [Sim09].

The objective of reverse mathematics, as described by Friedman and Simpson, is to classify the
theorems of mathematics according to the set existence axioms needed for their proofs, or, as some
of us also view it, according to the types of constructions needed in their proofs. In the last couple
decades, there has been a lot of work in this area, classifying many theorems from all over mathematics.
Many theorems are still waiting to be analyzed, and there are still some areas of mathematics that
have barely been looked at by reverse mathematicians. There is still a lot of work to be done in this
direction. The work of this type that has been done has been very fruitful; for instance, it has led
us to the conclusion that most theorems in mathematics are equivalent to one of the big five systems
over RCA0. (RCA0 referes to the Recursive Comprehension Axiom scheme, and the rest of the big
five are Weak König’s Lemma WKL0, the Arithmetic Comprehension Axiom scheme ACA0, Arithmetic
Transfinite Recursion ATR0, and the Π1

1-Comprehension Axiom scheme Π1
1-CA0.) Lately, researchers

have been more interested in finding theorems which are not equivalent to any of the big five systems.
Even though we now we know of many theorems that are not equivalent to any of the big five systems,
we would still claim that the great majority of the theorems from classical mathematics are equivalent
to one of the big five. This phenomenon is still quite striking. Though we have some sense of why
this phenomenon occurs, we really do not have a clear explanation for it, let alone a strictly logical or
mathematical reason for it. The way I view it, gaining a greater understanding of this phenomenon is
currently one of the driving questions behind reverse mathematics.
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To study the big five phenomenon, one distinction that I think is worth making is the one between
robust systems and non-robust systems. A system is robust if it is equivalent to small perturbations
of itself. This is not a precise notion yet, but we can still recognize some robust systems. All the big
five systems are very robust. For example, most theorems about ordinals, stated in different possible
ways, are all equivalent to each other and to ATR0. Apart from those systems, weak weak König’s
Lemma (WWKL0) is also robust, and we know no more than one or two other systems that may be
robust.

Another important question is whether the following conjecture holds. We know many examples of
theorems from mathematics which are incomparable in strengths over RCA0. However, if we look at
their consistency strength, they all seemed to be linearly ordered, or at least we have not been able to
prove the existence of a counterexample. This also occurs if we look at the relation of interpretability
between systems. (Friedman showed that one theory is interpretable in another if and only if its
consistency can be proved from the consistency of the latter theory in a somewhat effective way; see
[Smo85, §5].) Friedman and Simpson [FS00] proposed the following conjecture, which they call the
interpretability conjecture: Let X,Y be any finite sets of actual mathematical theorems in the published
literature, which can be stated in second-order arithmetic. Then either RCA0+X is interpretable in
RCA0+Y , or RCA0+Y is interpretable in RCA0+X.

In this paper, when I refer to the strength of a theorem, I mean proof-theoretic strength as used in the
reverse mathematics literature (i.e., measured by comparing the sets of implications of the theorem),
and not consistency strength, which is more commonly used in proof theory or set theory. Also, when
I ask about implications or equivalences between statements, I mean it over the base system RCA0.

2. Ramsey’s theorem

Combinatorics seems to be the area of mathematics where we have found the greatest number of
theorems escaping the big five. This is probably why there are so many open questions regarding
the strengths of theorems from combinatorics. Ramsey-like theorems have particularly attracted the
attention of reverse mathematicians.

2.1. Ramsey’s theorem for pairs. Both Ramsey’s theorem and König’s lemma are important com-
binatorial tools used all over mathematics. Weak König’s lemma, WKL0, has turned out to be equiv-
alent to many theorems from various branches of mathematics. Ramsey’s theorem for pairs, however,
has not. While it is true that compactness arguments (i.e., arguments using WKL0) are much more
common than combinatorial arguments using Ramsey’s theorem for pairs (denoted by RT2

2), the num-
ber of theorems that have been proved equivalent to RT2

2 seems disproportionately small. However, a
good many theorems are known to be implied by RT2

2, or to be very close to it. The main difference,
I believe, seems to be that WKL0 is a very robust system, while RT2

2 is not.
Let me start by stating the classical Ramsey theorem.

RTnk : Every coloring of the n-tuples of natural numbers with k colors has an infinite homoge-
neous set.

RTn: For every k, RTnk .

For n ≥ 3, we know that RTnk and RTn are both equivalent to ACA0 (which follows from Jockusch
[Joc72]). It is for n = 2 that the open questions arise. We know that WKL0 cannot imply RT2

2 (because,
using the low-basis theorem [JS72], we can build an ω-model of WKL0 that contains only low sets,
but by results of Jockusch [Joc72], every ω-model of RT2

2 contains some non-∆0
2 set). It is unknown

whether the converse holds. This is one of the most well-known open questions in the field.

Question 1. Does RCA0+RT2
2 imply WKL0?

Whether RT2 implies WKL0 is just as interesting and also unknown. Even if RT2
2 turns out to be

incomparable with WKL0, we already know that, in terms of first-order consequences, RT2
2 lies strictly

between WKL0 and ACA0. Let us denote (ϕ)1 for the set of first-order consequences of RCA0+ϕ. Using
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results of Harrington; Cholak, Jockusch, and Slaman [CJS01]; and Paris and Kirby [KP77] we know
that

(RCA0)1 = (WKL0)1 ( (BΣ0
2)1 ⊆ (RT2

2)1 ⊆ (IΣ0
2)1 (

(BΣ0
3)1 ⊆ (RT2)1 ⊆ (IΣ0

3)1 ( PA = (ACA0)1.

Here, BΣ0
k refers to the bounding principle for Σ0

k formulas, and IΣ0
k to the induction principle for

Σ0
k formulas. We do know that (BΣ0

2)1 ( (IΣ0
2)1 and that (BΣ0

3)1 ( (IΣ0
3)1 (Kirby and Paris [KP77]).

However, it is unknown where (RT2
2)1 lies between (BΣ0

2)1 and (IΣ0
2)1, and where (RT2)1 lies between

(BΣ0
3)1 and (IΣ0

3)1, even if we restrict ourselves to the set of Π0
2 consequences. We also do not know

what the consistency strength of RT2
2 is. All of these are very interesting questions. Let me highlight

the following related open questions.

Question 2. Does RT2
2 prove that the Ackermann function is total? Does RT2

2 prove that ωω is
well-ordered? (ωω is presented as N<N where the strings are ordered first by length and then lexico-
graphically.)

We note that IΣ0
2 proves both that the Ackermann function is total and that ωω is well-ordered, but

neither is implied by BΣ0
2. Thus, we get that both statements are implied by RT2 and the questions

are open only for RT2
2.

2.2. Statements below RT2
2. There has been a lot of work on statements surrounding RT2

2. There
are many statements that are very close to RT2

2 but that are not equivalent to it, or not known to be
equivalent to it. This is why we say that RT2

2 is a non-robust statement.

2.2.1. Stable Ramsey theorem. The usual proof of RT2
2 in ACA0 has two steps: First transform the

coloring into a stable coloring, and then deal with the stable coloring. Each of these two steps has
an associated statement of second-order arithmetic, providing a splitting of RT2

2 as the conjunction of
two apparently simpler statements. A coloring f : [N]2 → {0, 1} is stable if for every a ∈ N there exists
a color i ∈ {0, 1} such that f(a, b) = i for all sufficiently large b.

SRT2
2: Every stable 2-coloring of pairs of natural numbers has an infinite homogeneous set.

COH: For every sequence of sets {A0, A1, ....}, there exists an infinite set B such that, for every
i, either B \Ai or B ∩Ai is finite.

We know that RT2
2 is equivalent to SRT2

2+COH: For the right-to-left direction, given a 2-coloring
f : [N]2 → 2, apply COH to Ai = {b ∈ N|f(i, b) = 1} to get a stable 2-coloring f �[B]2, and then apply
SRT2

2 [CJS01]. That RT2
2 implies SRT2

2 is trivial, and that it implies COH requires a bit of work (see
[CJS01, CJS09] and [Mil04]). It was also shown in [CJS01] that COH does not imply RT2

2. However,
the following question, which has been tried by many people, remains open.

Question 3. Does RCA0+SRT2
2 imply RT2

2?

One of the original motivations for this question is that it would give an example of a natural
statement that can be non-trivially split into two somewhat natural statements. Hirschfeldt and Shore
[HS07] have exhibited examples of this behavior below RT2

2. They proved that the statements below
are each properly split into a stable version and COH.

ADS: Every infinite linear ordering has either an ascending or a descending sequence.

CAC: Every infinite partial ordering has an infinite set that is either a chain or an anti-chain.

A few other statements are considered in [HS07], and many questions are left open. For example,
they show that CAC implies ADS but leave the reversal open.

Question 4. Does ADS imply CAC?

Whether stable-ADS implies stable-CAC is also open (see [HS07] for definitions). In the cohesive
side, it is not known whether cohesive-ADS implies COH. (Cohesive-ADS says that every infinite linear
ordering has a subset of type either ω, ω∗ or ω + ω∗.)
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2.2.2. The tournament statement. A tournament is a binary relation T on a set P such that for all
a, b ∈ P with a 6= b, exactly one of T (a, b) and T (b, a) holds. Erdös and Moser considered a finitary
version of the following statement:

EM: Every infinite tournament has an infinite, transitive sub-tournament.

It was observed by Bovykin and Weiermann [BW] that RT2
2 is equivalent to ADS+EM over RCA0.

We know that ADS follows from CAC, which is strictly weaker than RT2
2 [HS07].

Question 5. Is EM strictly weaker than RT2
2?

2.2.3. Free-set and thin-set theorems. An infinite coloring of a set S of exponent n is just a function
f : [S]n → N. A subset A ⊆ S is said to be free for f if for every {x1, ..., xn} ∈ [A]n, either f(x1, ..., xn) 6∈
A or f(x1, ..., xn) ∈ {x1, ..., xn}. A subset T ⊆ S is said to be thin for f if f([T ]n) ( N. The following
theorems were first considered by Friedman.

FS(n): Every infinite coloring of N of exponent n admits an infinite free set.

TS(n): Every infinite coloring of N of exponent n admits an infinite thin set.

Friedman and Simpson [FS00] asked about the strengths of these theorems, and then Cholak, Giusto,
Hirst, and Jockusch [CGHJ05] studied them in more detail. A whole list of open questions can be
found in [CGHJ05, §7]; I will cite just one.

Question 6. Does either FS(2) or TS(2) imply RT2
2?

Let me note we do know that RTn2 implies FS(n), which implies TS(n) over RCA0.
At the Chicago workshop, Joe Miller proposed the study the statements RTnk,j which say that for

every k-coloring of n-tuples there exists an infinite set that uses only j colors. These statements have
already been analyzed by combinatorists and set theorist, both in the countable and uncountable case,
but not from a reverse mathematics viewpoint. Lempp, Miller, and Ng observed that RT3

3,2 implies
RT2

2, but not much else is known about these statements.

2.2.4. Tree Ramsey theorem. Let 2<N be the full binary tree, and let [2<N]n denote the set of n-tuples
of comparable nodes of 2<N.

TTnk : For every coloring of [2<N]n with k colors, there exists S ⊆ 2<N such that S is order
isomorphic to 2<N and [S]n is monochromatic.

The tree Ramsey theorem was first analyzed by McNicholl [McN95] and Chubb, Hirst, and McNicholl
[CHM09]. Further work was done by Corduan, Groszek, and Mileti [CGM]. It is easy to see that TTnk
implies RTnk , and for n ≥ 3 it can be shown that they are equivalent. For exponent 2, this question is
still open:

Question 7. Is TT2
2 strictly stronger than RT2

2?

For n = 1, however, we know that ∀kTT1
k is strictly stronger than ∀kRT1

k [CGM]. It was already
known [CHM09] that ∀kTT1

k follows from RCA0+IΣ0
2, but whether it implies it is still open.

2.2.5. Polarized Ramsey’s theorem. With the intention of finding statements that could help separate
RT2

2 from SRT2
2, Dzhafarov and Hirst [DH09] introduced a few additional versions of Ramsey’s theorem.

We mention only one, but the reader should consult [DH09, DLH10, CLY10] for other statements and
questions.

IPTnk : For every coloring of [N]n with k colors, there exist infinite sets H1, ...,Hn such that
{(x1, ..., xn) ∈ H1 × · · · ×Hn|x1 < x2 < · · · < xn} is monochromatic.

They showed that IPT2
2 follows from RT2

2 and implies SRT2
2.

Question 8. Is IPT2
2 equivalent to RT2

2, to SRT2
2, to both, or to neither?
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2.3. Hindman’s theorem. Another well-known open question concerns the strength of Hindman’s
theorem.

HT: For every coloring of N with finitely many colors, there is an infinite set A such that the
set of numbers which can be written as a sum of distinct elements of A is monochromatic.

Blass, Hirst, and Simpson [BHS87] showed that HT can be proved in ACA+
0 and that it implies

ACA0 (where ACA+
0 is RCA0+∀X(X(ω) exists)).

Question 9. Is HT equivalent to ACA+
0 , or to ACA0, or does it lie strictly between them?

There are various proofs of Hindman’s theorem. One of them, due to Glazer, uses ultrafilters of the
natural numbers; Hirst [Hir04] showed that HT is equivalent to the statement about ultrafilters (re-
stricted to countable Boolean algebras) used in Glazer’s proof, and to other combinatorial statements.
Other open questions regarding HT can be found in [Bla05]; see also section 3.5 below.

2.4. Dual Ramsey theorem. For k ≤ ω, let (ω)k be the set of partitions of N into k pieces. If
X ∈ (ω)ω, let (X)k be the set of Y ∈ (ω)k which are coarser than X, in the sense that every piece in
Y is a union of pieces of X. Carlson and Simpson [CS84] proved the following theorem, which we call
the dual Ramsey theorem.

DRTk: If (ω)k is colored with finitely many colors in a Borel way, then there exists X ∈ (ω)ω

such that (X)k is monochromatic.

Slaman [Sla] showed that DRTk can be proved in Π1
1-CA0. J. Miller and Solomon [MS04] showed

that it is not provable in WKL0 if k ≥ 3 and that it implies ACA0 for k ≥ 4.

Question 10. What else can we say about the strength of DRTk?

Let me now describe the main combinatorial lemma in [CS84]. An infinite variable word on a finite
alphabet A is an ω-sequence W of elements of A ∪ {xi|i ∈ N} in which all variables occur and all
occurrences of xi come before any occurrence of xi+1. Given ā = a0a1...ak−1 ∈ A<ω, we let W (ā)
denote the finite A-string obtained by replacing xi with ai in W and then truncating the result just
before the first occurrence of xk.

CS: If A<N is colored with finitely many colors, there exists an infinite variable word W such
that {W (ā) : ā ∈ A<N} is monochromatic.

Miller and Solomon [MS04] proved that CS is not probable in WKL0.

Question 11. What is the strength of CS?

Another statement that would be very interesting to analyze is a theorem of Carlson, which provides
a natural generalization of a large part of qualitative Ramsey theory, including RT, DRT, HT, the
Galvin–Prikry theorem, etc., all in one theorem. This theorem says that S(L, 1) is a Ramsey space,
but we refer the reader to [Car88] for definitions and background.

3. Algebra, analysis, and topology

Friedman and Simpson [FS00] assert that, even then in the year 2000, most of the theorems that are
part of the core curriculum in undergraduate or graduate programs in mathematics had already been
analyzed and proved equivalent to one of the big five systems (and a few to WWKL0). If we include
theorems that are part of those core subjects but may be a bit beyond the core curriculum, we start
finding theorems which have not been fully analyzed or have not yet been proved equivalent to any of
the big five systems. I will mention a few of these examples in this section.
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3.1. Algebra. There has been a lot of work on the reverse mathematics of algebra. Almost all the
theorems from algebra that have been analyzed have been proved equivalent to one of the big five
systems, and mostly to RCA0, WKL0, or ACA0. But there are still many theorems waiting to be
analyzed. There are still also a few open questions.

First, here are two questions that were already asked in [FS00]. When studying countable torsion
Abelian groups, the main tool is the analysis their Ulm sequence. Ulm sequences have ordinal length,
which is why ATR0 turned out to be the right place to work with reduced Abelian p-groups (see
[Fri, GM08]). If a group is not reduced, it takes Π1

1-CA0 to prove it can be expressed as a sum of a
divisible part and a reduced part [FSS83], and this is why most of the results about torsion Abelian
groups involve Π1

1-CA0.

Question 12. Are the following statements equivalent to Π1
1-CA0?

• Let G,H be countable torsion abelian groups, where G+G and H +H are isomorphic. Then
G,H are isomorphic.
• Let G and H be countable torsion Abelian groups such that each is a direct summand of the

other. Then G and H are isomorphic.

These results were considered by Kaplansky [Kap69]. Friedman [Fri] conjectured that the answers
to the questions above are positive, and also that if we restrict ourselves to reduced torsion Abelian
groups, then the statements should be equivalent to ATR0.

Recently, Chris Conidis [Cona] studied the strength of the classical theorem that every Artinian
Abelian ring is Noetherian. He showed that this statement is implied by ACA0 and that it implies
WKL0.

Question 13. Where between ACA0 and WKL0 does the statement that every Artinian Abelian ring is
Noetherian lie?

3.2. General topology. In second-order arithmetic there is a natural way to encode complete sepa-
rable metric spaces by taking a countable dense subset and representing the points as fast-converging
Cauchy sequences of points in the dense set (see [Sim09, §II.5]). However, if we want to talk about
general topology, the situation is much less clear. Mummert and Simpson [MS04] have proposed the
study of general second-countable topological spaces using MF spaces. Every partial ordering P de-
termines an MF space MF(P ) as follows: The points of MF(P ) are the maximal filters in P , and a
basis for the topology is composed of the sets Np = {F ∈ MF(P )|p ∈ F} for p ∈ P . They analyzed the
strength of the Urysohn’s metrization theorem and showed the following striking result: the statement
that says that an MF space is metrizable if and only if it is regular (i.e., that points and closed sets
can be separated by open sets) is equivalent to Π1

2-CA0 over Π1
1-CA0.

At the Chicago workshop, Mummert asked the following question:

Question 14. How strong is Alexandroff’s one-point compactification theorem for MF spaces? The
one-point compactification theorem says that to every space we can add a point in a way that makes
the whole space compact.

An important question we need to answer is whether this is a natural way of coding topological
spaces, and if not, we need to develop other ways of representing these spaces. It seems that the right
approach to general topology would be to study the algebra of open sets of topological spaces. MF
spaces were defined with this in mind. However, the most arguable aspect of this representation is
that being a point of an MF space (i.e., a maximal filter of P) is a Π1

1 property. This is exploited
in Mummert and Simpson’s proof that the metrization theorem implies Π1

2-CA0 over Π1
1-CA0: They

build a computable P such that MF(P ) is regular and {(p, q) ∈ P 2 : Np ⊆ Nq} is Π1
2-complete, and

then they use the fact that, on a complete separable metric space, deciding whether one open set is
included in another is Π1

1.
We say that a partial ordering P defines a proper MF space MF(P ) if for all p, q ∈ P , we have that

p ≤ q if and only if Np ⊆ Nq, and that if p|q, there exists r ∈ P with Nr = Np ∩ Nq. The problem
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with these types of spaces is that deciding whether a partial ordering P defines a proper MF-space is
Π1

2-complete (which follows from [MS04]). On the other hand, they could still aid in our understanding
of where the complexity in the metrization theorem comes from.

Question 15. What is the strength of the statement that a proper MF space is metrizable if and only
if it is regular?

3.3. Real analysis and Topology. Here is another question from [FS00] that has not yet been
solved.

The strong Tietze theorem says that if X is a compact metric space, K is a closed subset of X, and
f is a continuous function on K, then f can be extended to a continuous real-valued function on all of
X. There are standard ways to present compact metric spaces and continuous functions (see [Sim09,
§II.5 and §II.6]). There are various ways of representing closed sets. The strong Tietze theorem was
studied by Giusto and Simpson [GS00] for several of the definitions of closed sets. Here we represent
a closed set K as the complement of an open set. For this definition of closed set, they showed that
the strong Tietze theorem lies between WKL0 and DNR0.

Question 16. Is the strong Tietze theorem equivalent to WKL0?

See [AS06] for a study of the fundamental aspects of the theory of metric, Hilbert, and Banach
spaces in the context of subsystems of second-order arithmetic. There are also some interesting open
questions mentioned in the last section of [AS06].

3.4. Randomness and measure theory. Effective randomness can be used to study the strengths
of theorems of the form “almost every real has property P .” Knowing how random a real needs
to be to have property P should allow us to compare the strengths of such theorems. For instance,
Brattka, Miller, and Nies (unpublished) showed that x is computably random if and only if f ′(x) exists
for each computable non-decreasing function f on [0, 1]. Gács, Hoyrup, and Rojas [GHR10] studied
Birkhoff’s pointwise ergodic theorem in connection with Schnorr randomness. Pathak [Pat09] studied
the Lebesgue differentiation theorem, and proved that it holds at Martin-Löf random reals, but left
the reversal open.

This should translate to reverse mathematics in some way. For instance, the system of weak weak
König lemma WWKL0 (introduced by Simpson and Yu [YS90]) has been shown to be equivalent to
many basic theorems about measure theory and hence also randomness. It says that binary trees
of positive measure have paths. This system is equivalent (at least on ω-models; see [ASKHLS04,
Lemma 1.3]) to the existence of Martin-Löf random reals relative to any given set (that is already in
the model).

Going back to Pathak’s result above, Simpson noticed it follows that the Lebesgue differentiation
theorem can be proved in WWKL0, and he asked about the reversal.

LDT:
If f is an L1-function on [0, 1]d, represented as a Cauchy limit of polynomials, then for

almost all x ∈ [0, 1]d, we have that f(x) = limQ↘x

R
Q f

µ(Q) , where Q ranges over the open
cubes that contain x.

Question 17. Does LDT imply WWKL0?

3.5. Dynamics. The Auslander–Ellis theorem from topological dynamics can be used as a tool to
give yet another proof of Hindman’s theorem, as shown by Furstenberg and Weiss. (See section 2.3
above for Hindman’s theorem.)

AET:
Let X be a compact metric space and let T : X → X be continuous, defining a dynamical
system. For every x ∈ X, there exists y ∈ X that is uniformly recurrent and proximal to
x. That is, ∀ε > 0∃m∀n∃k < m(d(Tn+k(y), y) < ε) and ∀ε > 0∃∞n(d(Tn(x), Tn(y)) < ε).

Blass, Hirst and Simpson [BHS87] proved that AET follows from ACA+
0 . Simpson (see [FS00, page

138]) conjectured that it is equivalent to ACA0.
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Question 18. Is AET equivalent to ACA0?

There are a few other results on the reverse mathematics of theorems from topological dynamics
and ergodic theory. Researchers seem to agree there should be many more interesting theorems to be
analyzed in these areas. For instance, Avigad and Towsner analyzed the Furstenberg–Zimmer structure
theorem from ergodic theory. This theorem is hard to state briefly, so for background information we
refer the reader to the survey paper [Avi09] (where it is referred to as the Furstenberg structure
theorem). Avigad and Towsner conjectured that it is equivalent to Π1

1-CA0. They had ideas on how
to prove both directions, but now they believe they know how to prove only the right-to-left direction.
Avigad had claimed the equivalence in [Avi09, Theorem 5.3] but now says the question is open.

Question 19. Does the Furstenberg–Zimmer structure theorem imply Π1
1-CA0?

4. Well-orders and Well-quasi-orders

Well-quasi-orderings occur naturally in many areas of mathematics. For instance, trees, linear
orderings, sequences, finite graphs, etc. are all well-quasi-ordered under certain embeddability relations.
Many proofs about them are of unusual strength, and that is why they they are particularly attractive
to reverse mathematicians and proof theorists. For a recent survey of results on well-quasi-orders and
better-quasi-orders in reverse mathematics, see [Mar05].

Definition 4.1. A quasi-ordering (or pre-ordering) P is a well-quasi-ordering (wqo) if for every se-
quence {xn}n∈N ⊆ P , there exists i < j such that xi ≤P xj .

The definition above, which we take as our working definition, is equivalent to saying that P has no
infinite descending sequences and no infinite anti-chains. (The strengths of the equivalences between
various other definitions of wqo are analyzed in [CMS04], where some questions are left open.)

The main two tools used in working with wqo’s are length calculations and better-quasi-ordering
(bqo) theory.

4.1. Linearizations and lengths. A linearization of a partial ordering (P,≤P ) is a relation ≤L on
P extending ≤P such that (P,≤L) is a linear ordering. Let us start by considering the following
statement.

EXT(ω∗): Every well-founded partial ordering has a well-ordered linearization.

Kierstead and Rosenstein showed that every well-founded computable partial ordering has a well-
ordered computable linearization. However, this does not mean that EXT(ω∗) holds in RCA0: Rosen-
stein and Statman showed that not every computably well-founded computable partial ordering has a
computably well-ordered computable linearization. (See [Ros84] for these results.) Downey, Hirschfeldt,
Lempp, and Solomon [DHLS03] proved that EXT(ω∗) can be proved in ACA0 and that it is strictly
stronger than WKL0.

Question 20. Is EXT(ω∗) equivalent to ACA0?

When P is a wqo, it is not hard to see that every linearization of P is well-ordered (this is actually
equivalent to P being a wqo).

Definition 4.2. The length of a wqo W is the supremum of the order types of all the linearizations
of W . We denote it by o(W ).

The supremum is actually achieved by a single linearization of W (de Jongh and Parikh [dJP77]).
This is why the length of a wqo W is sometimes also called the maximal order type of W . This notion
is an extremely useful tool when working with wqo’s, as we will see below. A monograph that presents
many length calculations is [Sch79].



OPEN QUESTIONS IN REVERSE MATHEMATICS 9

4.2. Fräıssé’s conjecture. Fräıssé conjectured in [Fra48] that the class of scattered linear orderings
is well-quasi-ordered under embeddability, and Laver proved it in [Lav71]. Since there is only one
non-scattered countable linear ordering, in the countable case we refer to the following statement as
Fräıssé’s conjecture:

FRA: The class of (countable) linear orderings is well-quasi-ordered under the embeddability
relation.

Laver’s original proof of FRA works in Π1
2-CA0. Since it is a true Π1

2 statement, FRA cannot imply
Π1

1-CA0. Shore [Sho93] proved that RCA0+FRA implies ATR0, but the following question has been
open for more than twenty years.

Question 21. Is FRA equivalent to ATR0 over RCA0? Is it even implied by Π1
1-CA0?

Marcone and Montalbán have done extensive work on this question [Mar05, Mon07]. From Mon-
talbán’s results in [Mon06a], we get that FRA is a robust statement, and that it is necessary and
sufficient to work with linear orderings and the embeddability relation on them. These results make
the Question 21 much more interesting: A negative answer would give a new robust system.

Recently, Marcone and Montalbán started analyzing this question from the bottom up. Given
an ordinal α, let Lα be the partial ordering obtained by considering the class of linear orderings of
Hausdorff rank less than α, modulo the relation of equimorphism (bi-embeddability), and ordered by
embeddability. (For computable α, Lα is countable and can be presented computably [Mon05].) It
is not hard to show that FRA is equivalent to the statement that for every ordinal α, Lα is a wqo.
Marcone and Montalbán [MM09] considered Lω, the class of linear ordering of finite Hausdorff rank.
They showed that Lω has length εεε... , the first fixed point of the epsilon ordinal function, and proved
that the well-quasi-orderedness of Lω is equivalent to the well-orderedness of εεε... over ACA+

0 . (We
note that εεε... is the proof-theoretic ordinal of ACA+

0 , and hence its well-orderedness is not provable
in ACA+

0 .)
They now believe that answering the following question will lead to a solution to Question 21.

Question 22. Given an ordinal α, what is the length of Lα?

4.3. Transfinite sequences with finite range. Here is a wqo result, whose strength we do not
know: Given a wqo Q and an ordinal α, let Srα(Q) be the set of restricted α-sequences from Q, that
is, the set of functions s : α → Q with finite range. Given s, t ∈ Srα(Q), we let s ≤ t if there exists a
monotone map f : α→ α such that ∀i(s(i) ≤Q t(f(i))).

Question 23. How strong is the statement that if α is well-ordered and Q is a wqo, then (Srα(Q),≤) is
a wqo?

The statement in Question 23 was proved by Nash-Williams [NW65]. I expect the answer to this
question will be determined by an analysis of the length of the wqo involved. The analysis of the
lengths of these wqo’s given in [Sch79] is erroneous, and nobody has fixed it yet.

4.4. Better-quasi-orderings. The main tool used in dealing with wqo’s of infinite objects is Nash-
Williams’ notion of a bqo [NW68]. The classical definition of a bqo, which is the one we use as our
working definition, is a bit technical, so we refer the reader to [Mar05] for it. The following is an
equivalent definition (essentially due to Simpson [MW85]), which might be easier to understand.

Definition 4.3. A quasi-ordering Q is a better-quasi-ordering (bqo) if for every continuous function
f : [N]N → Q there exists an X ∈ [N]N such that f(X) ≤Q f(X−) (where [N]N is the space of infinite
subsets of N, X− is X without its smallest element, and where Q has the discrete topology).

Laver proved a stronger statement than FRA; we refer to the following statement as Laver’s theorem:

LAV:
If Q is a bqo, then so is L(Q), where L(Q) is the class of countable linear orderings
whose elements are labeled with elements of Q and embeddings need to map elements to
elements with larger than or equal labels.
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All we know about the strength of LAV is that it can be proved in Π1
2-CA0 (using Laver’s original

proof), and that it implies FRA and hence also ATR0.
Another important statement, weaker than LAV and similar to the statement in Question 23, is

Nash-Williams’ theorem:

NWT: If α is well-ordered and Q is a bqo, then Sα(Q) is also a bqo, where Sα(Q) is the set of
α-sequences from Q.

Marcone [Mar96] showed that Π1
1-CA0`NWT, and it follows from Shore’s result [Sho93] that NWT

implies ATR0. Marcone also showed that, over ATR0, NWT is equivalent to the generalized Higman
theorem that says that if Q is a bqo, then so is Q<ω.

Question 24. What are the strengths of LAV and NWT?

The following question shows how little we know about the logical strength of better-quasi-orderedness.
For n ∈ ω, let n represent the partial ordering consisting of n incomparable elements. That 2 is a bqo
can be proved in RCA0 [Mar05]. But so far, the only proof we know that 3 is a bqo uses the clopen
Ramsey theorem, which is equivalent to ATR0.

Question 25. Is there a system weaker than ATR0 that can prove that 3 is a bqo?

4.5. Well-order-preserving operators. Here are two questions related to the Howard–Bachmann
ordinal notation system and to Carlson’s notion of patterns of resemblance.

Let LO be the class of countable linear orderings, and let WO be the class of well-orderings. Given
a functional f : LO → LO, statements of the form ∀X ∈ LO (WO(X ) =⇒ WO(f(X ))) have been
studied for different functionals f coming from ordinal notations in proof theory such as X 7→ ωX ,
X 7→ εX , etc. and shown to have interesting strengths [Gir87, Hir94, FMW, AR10, RW, MM, Rat].
For a survey of recent results, see the Introduction of [MM].

Rathjen has conjectured (personal communication) that if we consider functionals F that map
functionals to functionals that preserve well-orderedness, we should get statements equivalent to those
of the form “every set belongs to a countably coded β-model of some theory T ,” where, of course,
F has to do with the ordinal analysis of T . In second-order arithmetic, we cannot quantify over all
functionals f : WO → WO, and in many cases it would not even make sense to consider all such
functionals. We will restrict ourselves to the class of dilators, introduced by Girard [Gir81], which
form a nice class of functionals f : WO→WO that can be represented by reals. Each dilator f comes
from a system of ordinal denotations as in [Gir81, §0.1]: If X is a well-ordering, then f(X) is defined
from X by building terms using functions symbols and rules to compare terms. We use DIL to denote
the class of dilators.

Montalbán has circulated a draft note [Mon] with his conjectures of what statements of this form
could be equivalent to Π1

1-CA0. Montalbán’s conjectures are based on Rathjen’s conjecture above.

Question 26. Is the following statement equivalent to Π1
1-CA0?

∀f ∈ DIL
(
ϑ(f(Ω + 1)) is well-ordered

)
.

This statement has to do with the Howard–Bachmann notation system. We are considering the
version of this system from [RW93, Section 1], where they use the projection operator ϑ instead of
ψ or θ. Recall that Ω is consider to be a large, “inaccessible” ordinal (such as ℵ1 or ωCK1 ). In the
definition of the ordinal notation for f(Ω + 1) [RW93, Section 1], the sets C(α, β) should be closed not
only under + and ωx but also under the other function symbols that generate the dilator f .

Question 27. Is the following statement equivalent to Π1
1-CA0?

∀f ∈ DIL
(
∃α ∈WO

(
α <1 f(α+ 1)

))
.

This second statement is related to Carlson’s notion of patterns of resemblance [Car01, Car09]. Given
a dilator f , let Lf be the language which consists of the function symbols that generate f . Given an
ordinal α, we have that (α,≤, Lf ) is a first-order structure. Following [Car01], we define a relation
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≤1 on ordinals by transfinite recursion: we let α ≤1 β if and only if the structure (α;≤, Lf ,≤1) is a
Σ1-elementary substructure of (β;≤, Lf ,≤1). Ideas from Wilken [Wil06, Wil07] may help to compare
the statements in the two questions above.

Neither of these statements has been analyzed and the precise definitions of the notions involved
might have to be adjusted to get interesting results.

5. Miscellaneous

5.1. Determinacy. Logicians have been studying the strengths of the different levels of determinacy
for many years, obtaining reversals that range from WKL0 to large cardinal hypotheses. Recently,
Montalbán and Shore found the exact amount of determinacy that is provable in second-order arith-
metic [MS]: For each fixed n, it can be proved in second-order arithmetic that Boolean combinations
of n Π0

3-sets are determined, but it cannot be proved that all Boolean combinations of (any number
of) Π0

3-sets are determined.

Question 28. Can we get a precise classification of the proof-theoretic strength of Π0
3-Determinacy?

What about determinacy for the finite levels of the difference hierarchy of Π0
3 sets?

MedSalem and Tanaka have recently obtained such a precise classification for ∆0
3-determinacy.

Welch [Wel] has recently obtained partial results in regard to the first question above, and Montalbán
and Shore [MS] in regard to the second.

Nemoto [Nem09] (following Nemoto, MedSalem, and Tanaka [NOMT07]) studied the strength of
determinacy for the classes of the Wadge hierarchy of Borel pointclasses on Cantor space. This
hierarchy starts with the class of clopen sets, continues with the open sets, is followed by a sequence
of classes of size ω1 going through the difference hierarchy of open sets up to the class of ∆0

2 sets, and
keeps on going. Using new and old results, Nemoto obtained a fairly full picture, with pointclasses
ranging from ∆0

1 to ∆0
3 and systems ranging from WKL∗0 to way beyond Π1

1-TR0 [Nem09, Table 2]. The
strength of determinacy for a few classes are left open, such as the classes in the difference hierarchy
of Σ0

1 sets and the classes in the Wadge hierarchy between Sep(Σ0
1,Σ

0
2) and Bisep(∆0

2,Σ
0
2). A program

that involves all these questions is the following.

Question 29. Find the exact proof-theoretic strength of determinacy for each of the classes of the
Wadge hierarchy on Cantor space.

An answer would provide a naturally defined spine of sub-systems of second-order arithmetic.

5.2. Hyperarithmetic analysis. We say that a theory T is a theory of hyperarithmetic analysis if
all its ω-models are closed under hyperarithmetic reduction and for every Y ⊆ ω, HY P (Y ) |= T .
We say that a statement S is of hyperarithmetic analysis if RCA0+S is a theory of hyperarithmetic
analysis. Many theories of hyperarithmetic analysis have been studied. Here are the main examples,
from stronger to weaker:

Σ1
1-dependent choice ⇒ Σ1

1-choice ⇒ Π1
1-separation ⇒

∆1
1-CA0 ⇒ Jullien’s indecomposability Theorem ⇒

weak-Σ1
1-choice ⇒ the jump iteration statement.

Since the class of hyperarithmetic sets is such a natural class, one would expect that many theorems
from mathematics are at this level (see, for instance, Friedman’s ICM paper [Fri75]). Thus far, however,
only one natural mathematical theorem has been found at this level, namely, Jullien’s theorem on
indecomposable linear orderings, which was analyzed first by Montalbán [Mon06b] and later by Neeman
[Nee]. Another statement at this level is the arithmetic Bolzano–Weierstrass theorem, first mentioned
in [Fri75] and analyzed by Conidis [Conb]. This latter theorem uses the notion of arithmetic set of
reals, which is not really a core-mathematics notion. (The question of how the arithmetic Bolzano–
Weierstrass theorem compares with Π1

1-separation is still open.) All the other theories at this level use
concepts from logic. A general question would be the following.
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Question 30. Are there other natural theorems of mathematics which are statements of hyperarithmetic
analysis?

In [Mon06b], Montalbán introduced statements about finitely terminating games that are also state-
ments of hyperarithmetic analysis. The precise strengths of the statements that he called DG-AC0 and
CDG-AC0 have not been deeply studied. Let me restate the latter of these statements with different
terminology. An Lω1,ω formula is a formula of arithmetic where infinite disjunctions and conjunctions
are allowed. In second-order arithmetic we can represent them using well-founded trees, labeling the
nodes with the usual logic connectors. A valuation of an Lω1,ω formula ϕ is a function

v : sub-formulas(ϕ)→ {T, F}
where the obvious logic rules apply. Proving that such valuations always exist requires ATR0. However,
the following statement does not:

weak-Lω1,ω-CA: Let {ϕi : i ∈ ω} be a sequence of Lω1,ω formulas for which valuations exist.
Then there exists a set X such that n ∈ X if and only if ϕn holds.

This follows from weak-Σ1
1-AC0 and is a statement of hyperarithmetic analysis (see Montalbán’s

[Mon06b] analysis of CDG-AC0).

Question 31. Is weak-Lω1,ω-CA equivalent to weak-Σ1
1-AC0?

6. Changing the setting

6.1. Changing the base. A good base for reverse mathematics needs to have two properties: It has
to be weak enough to be able to distinguish theorems which should not be equivalent, and it has to
be strong enough to prove the basic properties of the coding we are using to represent objects. RCA0

has been solidly established as the standard base for reverse mathematics, but depending on the area
of mathematics we are interested in, different bases might be more appropriate.

6.1.1. Strengthening the base. The first step in arguing that a stronger base is needed in a particular
case would be to find an equivalence that holds over a stronger base but not over RCA0. There are very
few examples where this holds. Hirschfeldt asked for more of such examples at the Banff workshop.
One example is provided by Giusto and Marcone [GM98], where they show that WKL0 is necessary
to prove that certain statements about Compact, Lebesgue and Atsuji spaces are equivalent to ACA0.
These statements have the form “If a space has a certain property P , then it has property Q”, and
they show that WKL0 is necessary to prove the existence of a space with property P and make such a
statement non-trivial. For most of the other examples we know, the stronger base is RCA0 plus some
extra induction. When working in reverse mathematics, it is usually the case that if initially we use
too much induction to prove a certain implication, the use of induction can be brought down later.
A few examples where this is not the case have been found lately. See, for example, Neeman [Nee]
and MedSalem and Tanaka [MT07]. The following are two examples where Σ1

1 induction was used,
but it is unknown whether it is necessary: Montalbán’s proof that ATR0 implies the extendability
of η (i.e., that every poset without a linearly ordered dense subset has a linearization also without
dense subsets)[Mon06a], and Conidis’ proof that the arithmetic Bolzano–Weierstrass theorem implies
weak-Σ1

1-choice [Conb].

6.1.2. Weakening the base. Buss’ theory S1
2 of bounded arithmetic (introduced in [Bus86]) has been

widely studied. This theory attracted the interest of computer scientists because its provably total
functions are exactly the polynomial-time-bounded computable functions, which leads to connections
with the P vs NP problem. This is a first-order theory. If we want to work in second-order arithmetic
(a.k.a. analysis), we have Ferreira’s theory of feasible analysis, BTFA, where, also, the provably total
functions are exactly the polynomial-time-bounded computable functions. (See [FF02].) This theory
is, in a sense (but not exactly), Π0

2-conservative over Buss’ first-order theory S1
2. Some results from

analysis have already been analyzed over this new base system, yielding interesting results. This field
is ripe for further developments.
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Friedman and Simpson [FS00, Sec 10] propose the study of RCA∗ as a base, where, in RCA∗ (intro-
duced by Simpson and Smith [SS86]), Σ0

1-induction is replaced by Σ0
0-induction and the exponentiation

function is assumed. Little work has been done on this. However, for example, Nemoto recently showed
that most of the analysis on determinacy statements can be done over RCA∗, and she was able to sep-
arate two determinacy statements over RCA∗, both of which are equivalent to WKL0 over RCA0.

6.2. Higher-order reverse mathematics. Even if we can express most of mathematics in second-
order arithmetic, there are many statements that one would like to consider but that either cannot
be expressed at all in second order or require complicated and unnatural coding. This calls for the
development of reverse mathematics at third-order or even higher-order arithmetic.

In [Koh05], Kohlenbach indicates that there is an interesting kind of reverse mathematics at higher
order. He proposes to use the language of arithmetic in all finite types. In this language there is a
set T of types defined as follows: N ∈ T, and if ρ, τ ∈ T then ρ → τ ∈ T. (It is common to use 0 to
denote the type N of natural numbers.) For each type in T, we have variables that range over that
type. For a base system, Kohlenbach defines RCAω0 , which is based on a system previously considered
by Feferman, and is conservative over RCA0. Then he shows that the system he calls (∃2), which
is conservative over PA, is equivalent to various statements about continuous functions. This line of
investigation was later continued by Sakamoto and Yamazaki [SY04], who analyzed other statements
and systems. Also, Hunter [Hun08] has started the study of general topological spaces of any size.

There is a lot of room for further interesting work in this setting.

6.3. Strict reverse mathematics. Friedman proposes the development what he calls strict reverse
mathematics (SRM). The objective of SRM is to eliminate the following two possible criticisms of
reverse mathematics: that we need to code objects in cumbersome ways ( something that is not part
of classical mathematics), and that some of the axiom schemes we use, such as comprehension and
induction, are purely logical and do not come from mathematical practice.

As for the coding issue, Friedman says that, for each area X of mathematics, there will be a SRM
for X. The basic concepts of X will be taken as primitives, avoiding the need for coding. This would
also allow consideration of uncountable structures, thereby getting around this limitation of reverse
mathematics.

As for axioms for the base theory for SRM for X, one would need to take purely natural mathematical
statements from the practice of X. Friedman believes that, given X, it should be possible to find the
right setting where one can find such axioms, though this might take some work. He has already done
it in a few settings. To cite one, he considered a logical system with three sorts, corresponding to
the natural numbers, the integers, and the set of functions from the naturals to the integers. He then
composed some lists of “purely mathematical statements” (including the axioms of ordered semi-rings
and of rings) and proved that they are equivalent (without the use of any base system) to RCA0, or to
WKL0, etc.

For these proofs and additional background, see [Fri09].

6.4. Computable Entailment. Shore [Shoa] makes an explicit formalization of the intuition that
“harder to prove” means “harder to compute”. His formalization in the countable case is not new; in
fact, this is what most of us computability theorists have in mind when we do reverse mathematics.

Definition 6.1. Consider Π1
2 formulas Ψ ≡ ∀X∃YΨ1(X,Y ), Φ ≡ ∀X∃Y Φ1(X,Y ). We say that Ψ

computably entails Φ if the following holds: If C is a class of sets which is closed under Turing reduction
and the join operation, and has the property that for every X ∈ C, there is Y ∈ C such that Ψ1(X,Y )
holds, then we have that for every X ∈ C, there is Y ∈ C such that Φ1(X,Y ) holds.

This essentially says that solutions to Φ can be computed from solutions to Ψ, perhaps by iterating
Ψ a few times. Note that this is equivalent to saying that Φ is true in every ω-model in which Ψ
is true. The two main advantages of this approach are that it provides a different expository route
into the subject which may be more suitable for a mathematical audience that intuitively understands
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computability but may find formal proof systems foreign or less appealing, and that it provides an
opportunity to deal with uncountable structures and higher-order statements that are out of reach of
standard proof-theoretic methods.

Let me explain this second claim. Notice that, in the definition above, we can use any notion of re-
ducibility in place of Turing reducibility and still get a notion of computable entailment. For instance,
on uncountable sets one can use α-recursion, Blum–Shub–Smale computability, Borel reduction, or
whatever works for the specific problem. Shore suggests the following general program: Develop a
computability-theoretic type of reverse mathematical analysis of mathematical theorems on uncount-
able structures using whichever generalized notion of computability seems appropriate to the subject
being analyzed. He has already gotten started on this program; in [Shoa] he develops analogues of
ACA0 and WKL0 that use α-recursion, and compares them to a few theorems such as the existence of
basis for vectors spaces and the existence of prime ideals on rings.
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