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ABSTRACT. In this paper we survey some developments and new results on the proof and applications
of the Gauss-Bonnet theorem. Our special emphasis is the relation of this theorem to different areas
including characteristic classes, probability, polyhedra and physics.

1. INTRODUCTION

The Gauss-Bonnet theorem is an important theorem in differential geometry. It is intrinsically
beautiful because it relates the curvature of a manifold—a geometrical object—with the its Euler
Characteristic—a topological one. In this article, we shall explain the developments of the Gauss-
Bonnet theorem in the last 60 years.

First of all, we will state this theorem in its initial form and find out that, even in this case, there are
several interesting applications of it in the area of low dimensional manifolds.

Then, we’ll generalize this initial form in two directions and exhibit the respective results. It turns
out that the second one is more important than the first one. It aroused the interest of mathematicians
about 50 years ago and gives great insight into several theories. We will outline one of the proofs for
the theorem in this general version. The proof uses the characteristic classes of vector bundles on the
manifolds, which will give us a better understanding of the theorem itself.

Moreover, we will discuss other efforts to prove this theorem. By looking at its polyhedral version,
we can see that it is dual to the Gram-Sommerville formula. On the other hand, from the viewpoint of
probability, it relates to a heat kernel and can be proved by an analytical method.

Finally, we are going to look at its application in physics and describe the derivation of the optical
Berry phase from our Gauss-Bonnet theorem.

2. BASIC DEFINITIONS FOR THE THEOREM

1. Gauss Map: Let M be an oriented hypersurface in n
�

1 dimensional Euclidean space. Then M
has trivial normal bundle by the fact that M is oriented. Hence, at every point x � M, there is a normal
vector nx pointing outside in � n � 1, which has norm 1 and changes smoothly w.r.t. x � Define the Gauss
map γ from M to Sn by γ � x ��� nx � (Here we actually take Tx � n � 1 �	� n � 1 as the same Euclidean space
for every x in M � )

2. Gauss-Kronecker Curvature: (We will also call it Gauss curvature in this paper) Let N 
 M be
Riemannian manifolds with Levi-Civita Connection � N 
�� M and M be a submanifold of N � For n �
TxM 
�
 X 
 Y � TxM 
�� x � M 
 we define the second fundamental form of M w.r.t. N by ln � X 
 Y ������ n 
�� N

XY ��� It is linear and symmetric in X and Y � (see [J] 3.4). Thus � SnX � TxM such that
ln � X 
 Y ��� � SnX 
 Y � . For a unit normal vector field n, Sn : TxM ��� TxM then is a self adjoint linear
map w.r.t. the metric � 
�� . Finally, the Gauss-Kronecker curvature of M in the direction n is defined
by

Kn � detSn �
It is not hard to prove that Kn is also det � dγ � , where γ is the Gauss map and n is its corresponding
normal vector field in its definition.

3. Euler Characteristic:
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(a) Topological definition: The Euler characteristic of a manifold Mm is defined as,

χ � Mm � : � m

∑
i � 0
� � 1 � iβi 


where βi � rank � H i � M ��� .
(b) Geometrical definition: Let M 
 N be oriented smooth manifolds, S be an oriented submanifold of

N, and dimM
�

dimS � dimN � Let f � C∞ � M 
 N ��
 p � f � 1 � S ��
 and f intersects S transversally at p.
Let π : � n ��� 0 � � n � s be the projection and ψ be the chart near p 
 such that dψ � TpS �!�	� s � 0, then
π " ψ " f is an isomorphism near p � Hence we can ask Sgn � π " ψ " f � to be the sign of the determinant
of Tp � π " ψ " f � . Now define the intersection number of f and S as:

I � f 
 S � : � Σp # f $ 1 % S & Sgn � f 
 S � p �
There is an important property of the intersection number that if f and g is homotopic, then I � f 
 S ���
I � g 
 S ��� We also know that every map can be homotopic to a map transversing to S provided some
conditions of dimensions. So I � f 
 S � is meaningful even if f doesn’t transverse to S.

Now if M is also a submanifold of N, we can define the intersection number of M and S as I � M 
 S � : �
I � i 
 S ��
 where i is the inclusion map. Finally, let E0 be the 0-section of TM; the Euler characteristic of
M is defined by:

χ � M � : � I � E0 
 E0 ���
In fact, these two definitions are equivalent.

3. THE GAUSS-BONNET THEOREM FOR CODIMENSION 1

After we defined the Gauss map, Gauss curvature and Euler characteristic, we can describe the
Gauss-Bonnet theorem without any difficulty.

Theorem 3.1. (original Gauss-Bonnet theorem) Let M be an even dimensional compact smooth hyper-
surface in the Euclidean space, then

v � m � � 1 '
M

Kn � x � dµM �(� 1 ) 2 � χ � M �*� deg � γ ��

where m is the dimension of M 
 v � m � is the volume of Sm 
 and n is the normal vector field appeared in
the definition of Gauss map γ �

Even in its original form, the Gauss-Bonnet theorem is rather useful for low dimensional manifolds.
Because it links the curvature and the Euler characteristic, we can always predict something topological
for a manifold with constant-sign curvatures. We cite two examples here:

Example 3.2. For a 2-dimensional manifold M, χ � M ��� 2 � 2g � If M has positive curvature K, then
2π + χ � M ���(, Kdµ � 0 
 hence, topologically, M can only be S2. Moreover γ � M �.- S2 is closed (by
compactness of M) and open (by det � dγ �/� K � 0), so γ � M �0� S2 � Therefore, γ : M ��� S2 is onto.
Furthermore, we can use the Gauss-Bonnet theorem to prove that γ is indeed injective. In fact in [S]-
Chap 6, there is even a theorem for more curious readers: (we write it as a statement)

Statement Let M be a compact connected 2-manifold, and f : M ��� � 3 an immersion with positive
Gauss curvature. Then M is orientable, the Gauss map γ : M �!� S2 1 � 3 is a diffeomor-
phism, the map f : M ��� � 3 is an embedding and f � M � is convex.

Example 3.3. For a 4-dimensional manifold M 
 Gauss Bonnet theorem shows that,

χ � M ���(� 4π � � 1 '
M

Kdµ �
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If the sectional curvature R � 0 ��2 0 � or � ��3 0 � , then by a clever calculation in [C3] we will have
K � 0 ��2 0 ��� Therefore, if M is a compact 4 manifold with sectional curvature R � 0 ��2 0 � or � ��3 0 � ,
then χ � M �/� 0 �42 0 ���

Of course, the next thing to do is to generalize Theorem 3.1. Naturally there are two ways to make
extensions: Find a formula giving deg � γ � for all dimensions; find a formula giving χ � M � in terms of the
curvature tensor for all compact Riemannian manifolds; .

In the second case, C. B.Allendoerfer and A. Well discovered the formula in 1940 [AW], and in 1944
S.S. Chern found an intrinsic proof for it. We will return to this later.

In the first case, it turns out as the following theorem [G]:
Theorem 3.4. Let f : N �!� � n be a map whose Jacobian is nonzero on the oriented boundary M of a
compact n � manifold N � Then if x is the projection of � n to some x � axis and ∇ � x " f � is the gradient
vector field of the composition of maps � x " f � and Ind is its index, we have

deg � γ ��� χ � N � � Ind � ∇ � x " f �����
The fact that f has nonzero Jacobian on the boundary M of course means that f is an immersion

on M. Since the composition � x " f � is a map from N to the real line � , the gradient can be defined
as in advanced calculus and gives a vector field on N. The index of a vector field, which is a new
term in this paper, is another topological invariant closely related to the degree of a map. In fact,
for a vector field V , we can locally view it as a map from the n dimensional manifold to � n, and
Ind � V � : � ∑x #65 zero points of V 7 Sgn � dxV � . Index also has the property that if V and W are homotopic,
then Ind � V ��� Ind � W � . (see [Zh]-Chap11 for the details.) Then Theorem 3.2 follows easily from the
Morse’s beautiful equation involving the index of a vector field. Marstion Morse discovered it in 1929
in the [M].

Morse’s Equation: Let V be a vector field defined on N, and suppose V is not zero on the bound-
ary M. Then IndV

�
Ind∂ � V � χ � N � , where ∂ � V is a vector field induced by V and defined on

that part of boundary M where V points inside.

Brief proof of Theorem 3.2: Let V � ∇ � x " f � , then all we have to show is that deg � γ �/� Ind∂ � V .
Geometrically, the direction of the gradient is the direction that the function increases most, so W : �
∇M � x " f ��� projectionof∇ � x " f � onto TM. (Here, ∇M denote the gradient in the manifold M.) And
f 89� Wp ��� πp � a � , where πp is the projection from � n � 1 to f 8�� TpM � and a = the unit vector along x-axis.
We may suppose : a are regular values of γ, by the Sard theorem. With the observation that,

πp � a ��� 0 ;=< γ � p �>�	: a 

we then ask Z �@? q � M : γ � q ��� � a A , then f 8B� V � points inside at every point of Z. So it’s suffice to
show that deg � γ ��� IndZ f 8B� W � , since ∂ � V and W is homotopic and f 8 is an isomorphism. � IndZ f 89� W �
means to calculate Sgn � dx � f 8 W ��� only on the subset Z of the zero points of f 8 W ). In fact

f 89� W ��� x �>� a � � γ � x �C+ a � γ � x ���
By derivation at both side, we’ll have,

dx � f 8�� W ����� ξ �>� dxγ � ξ ��
D� x � Z �
By the definition of deg and Ind,

deg � γ ��� ∑
x # Z

Sgn � dxγ �!� ∑
x # Z

Sgn � dx f 8 � W ���>� IndZ f 8 � W ���
The Gauss-Bonnet theorem (Theorem 3.1) follows immediately from this theorem with a basic prop-

erty of the index: If V is a vector field on an odd dimensional manifold, then Ind � � V ��� � Ind � V � . If
we choose the x-axis in the Theorem 3.2 to run in the opposite direction, we reverse the direction of the
gradient. But, the two terms in Theorem 3.2 certainly do not care which way the x-axis is going. So
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we must have Ind � ∇ � x " f ����� 0. Thus deg � γ ��� χ � N ��� 1
2χ � M � . The last equality follows because the

Euler characteristic for an even dimensional boundary is twice the Euler characteristic of its bounded
manifold. This is a fact form the long exact sequence of the homology group of the two manifolds and
the Poincaré duality in Algebraic Topology.

There is one point that remains to be clarified. Does every orientable M that can be immersed in a
codimension 1 Euclidean space bound an N so that the immersion can be extended to an f ? The answer
is yes. This follows form a statement in [W] that the manifold is an oriented boundary if and only if
all Pontrjagin numbers and all Stiefel-Whitney numbers of it are zero. In our case the Stiefel-Whitney
numbers and Pontrjagin numbers of M are actually all 0 by the fact that M has a trivial normal bundle
with which we take Whitney sum with TM is again trivial.

4. HIGHER CODIMENSIONAL CASE

4.1. Generalized Theorems. Now we are going to discuss our second way to make the extension:
Find a formula giving χ � M � in terms of the curvature tensor for all manifolds. The first breakthrough
is:

Theorem 4.1. Let Mn be a closed Riemannian manifold of dimension n; let dµ � x � be the Riemannian
volume-element at the point x with local coordinates xi; let gi j be the metric tensor, g � det � gi j ��
 Ri1 i2 j1 j2

the Riemannian curvature tensor induced by the Levi-Civita connection at the same point; let ε % i & be a
symbol which is equal to 1 or � 1 according as i1 
��E�F�F
 in form an even or odd permutation of 1 
��E�F�E
 n; and
define the invariant scalar ψ � x � by:

ψ � x �>�(� 2π � � n G 2 � 2n � n ) 2 � ! � � 1 ∑
i H j ε % i & ε % j & g � 1Ri1i2 j1 j2Ri3 i4 j3 j4 �E�F� Rin $ 1in jn $ 1 jn

for n even; ψ � x ��� 0 
 for n odd. Then,

'
Mn

ψ � x � dµ � x ��� χ � M ���
This is proved by C.B.Allendoerfer and A. Well in their paper [AW] in 1940, using Hermann Weyl’s

theory of tubes. However they required Mn in their paper to be embedded in some higher dimensional
Euclidean space. Later, in the 1950’s, Nash proved that every Riemannian manifold can be isometri-
cally embedded in some Euclidean space. This finally completed the theorem above for all Riemannian
manifolds. But it was not yet perfect in the sense that an intrinsic formula should have an intrinsic
proof. And that was done by Chern.

Locally, we can choose a frame: � x 
 e1 
I�F�F��
 en ��
 with � ei 
 e j �J� δi j. Let � ω1 
6�E�F��
 ωn � be the dual
basis of � e1 
6�F�E��
 en � , and Ωil il K 1 � Σ jl jl K 1Ril il K 1 jl jl K 1ω jl L ω jl K 1 , l � 1 
 3 
��E�F�

Let Ω be defined as:

Ω : �@� 2π � � n G 2 � 2n � n ) 2 � ! � � 1 ∑ε % i & + Ωi1i2 L �F�E� L Ωin $ 1in

for n even, Ω : � 0 for n odd. Then we have,

ψ � x � dµ � x ��� Ω

Another equivalent expression for the Gauss-Bonnet theorem is then:

Theorem 4.2. Let Mn be a closed Riemannian manifold of dimension n, then,

'
Mn

Ω � χ � M ���
This is proved intrinsically in Chern’s famous paper [C1]. Briefly speaking, his method is to construct

a form Φ on the sphere bundle ξ � π : E �!� M, such that π 8 � Ω �>� dΦ. Then with Stokes’s theorem,
the result is easily followed.
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4.2. The Relation to the Original Gauss-Bonnet Theorem. These two theorems look quite different
from the original Gauss-Bonnet theorem, but after an easy calculation we can see that the original one
is just a special case of these two when they are applied to the codimension 1 case.

Let Mn be immersed into � n � 1 
!? ei A be the principal curvature vectors with principal curvatures? λi AM� ([J]-3.6). By Gauss equations and the fact that the curvature tensor of � n � 1 is 0, we have,

Ri jlk � � R � ei 
 e j � ek 
 el �� l � e j 
 ek �N+ l � ei 
 el � � l � e j 
 el �� λi + λ j � δ jk + δil
� δik + δ jl �

��< Ωi j � 2λi + λ jωi L ω j, ��< Ω � v � n �4� 1Kdµ. (g is 1 in this case.)
So Theorem 4.1 and Theorem 4.2 imply Theorem 3.1, when M is a hypersurface. This also shows

that K is intrinsic when n is even. In fact, Kdµ � Ω 
 which is intrinsic since Ω is independent of the
choice of the frame. [C1]. By the way, when n is odd, K is not intrinsic anymore, but K2 is intrinsic.
Similarly, by choosing ei to be the principal curvature vectors, we can show that K2 is actually the
intrinsic sum

∑ε % i & ε % j & Ri1 j1i1 j1 �E�F� Rin jnin jn O
4.3. The Background of the Ω and ψ � x � . Ω and ψ � x � in the theorems look really like a huge monster.
It must exist a natural way to construct them behind the complicated expressions. In fact it turns out
they are the Pfaffian of the curvature tensor of the manifold. We will make the following calculation to
have it shown.

For our convenience, we define Pfaffian P f � A � for an n � n l � form valued matrix A ��� ai j � with
n � 2m, by, � 2mm! � P f � A � ω1 L �E�F� L ωn � ∑ L m

k � 1 � aik jk L ωik L ω jk ��

By a direct calculation,

P f � A �/�P� 2mm! � � 1 ∑ε % i & + ai1i2 L �E�F� L ain $ 1in �
Let ξ � π : E �Q� M be a smooth oriented n-dimensional vector bundle over M (here we even don’t

care what dimension M is), where n � 2m. If � 
�� is a Riemannian metric for ξ 
 then we can consider
the bundle SO � E � of oriented orthonormal frames, which is a principal bundle with group SO � n � . We
know that there is a connection ω on the principal bundle p : SO � E � �!� M, where ω is a matrix of
1-forms � ωi j � on SO � E � taking values in o � n � . Thus at every point of SO � E � we can define the vertical
part V and the horizontal part H of its tangent space. They are actually ker � p 89� and ker � ω � respectively.
For every k-form α on SO � E � , with values in a vector space V , we define a V -valued � k � 1 � -form Dα,
the covariant differential of α, by

Dα � Y1 
��F�E�F
 Yk � 1 �!� dα � hY1 
��F�F�E
 hYk � 1 �
where hYi is the horizontal component of Yi � Now we can have our curvature form K � Dω, which
is also a matrix of 2-forms � Ωi j � with values in o � n ��� This curvature form does indeed correspond to
the curvature form we defined in the textbook [J]-3.1. In fact, there are at least five equivalent ways
to define a connection. In this paper, we’ll refer the other two of them besides the one defined in the
textbook, i.e. the Ehresmann connection on the principal bundle and the Cartan connection on the
moving frames. There is even a theory about the relations between various definitions of a connection.
It turns out they all are equivalent and so are the curvature forms they induce. Interested readers may
refer [S] II-Chap8 for the detail reasoning. Now we consider n-form,

� π � � mP f � K ��� c∑ε % i & + Ωi1i2 L �F�E� L Ωin $ 1in

where c � 1 � πm + 22m + m!. There is a unique n-form Λ on M such that p 8 � Λ ���R� π ��� mP f � K � . It can
be shown that Λ is closed and the cohomology class SΛ T is independent of metric � 
�� and of the
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connection ω. ([S] V-Chap13). (The reason for us to use the connection on the principal bundle is
partly because it’s easier to prove all kinds of properties of this Λ there.) In particular, when ξ � TM,
this Λ is just our Ω in Theorem 4.2 by the equivalent of different definitions.

4.4. An Outline of a Proof for Theorem 4.2 and some Insights. We’ve seen that every oriented
smooth bundle ξ over M of an even fiber dimension n determines a de Rham cohomology class c � ξ �!�
c +USΛ TV� Hn � M � . When n is odd, we simply define c � ξ �!� 0 � It turns out c � ξ � satisfies: ([S] V-Chap13)

(1) c � f 8 ξ �!� f 8 � c � ξ �4�*� Hm � M1 ��
 where f is smooth: M1
��� M;

(2) c � ξ1 W ξ2 �>� % m1 � m2 & !
m1!m2! c � ξ1 �YX c � ξ2 � , where mi is the dimension of the bundle ξi;

(3) c � ξ �!� 0, if ξ has a nowhere zero section.

But these facts practically characterize the Euler class. Indeed, a theorem in [S] V-Chap13 proved that
c � ξ � is a multiple of the Euler class χ � ξ � . (We use the letter χ also to denote the Euler class here.) When
we take ξ to be the tangent bundle, again, by a calculation in [S] V-Chap13, c � ξ ��� c + χ � ξ � , � n.

Now, let µ to be the fundermental class of M 
 then we have,

'
M

Ω � c � 1 + c � ξ ��� µ �>� χ � ξ ��

which is the Gauss-Bonnet theorem!

This proof gives us several new insights into the theorem. We list three of them below:
1. The class c � ξ � plays a significant role in this proof. We may try to find out what all such nat-

ural classes c � ξ � are. To be precise, we define a characteristic class of dimension k for a smooth
n-dimensional bundle ξ � π : E ��� M to be an element c � ξ ��� H k � M � , with the properties

(i) c � f 8 ξ �!� f 8 � c � ξ �4�*� Hm � M1 ��
 where f is smooth: M1 �!� M;
(ii) c � ξ �>� c � η � if ξ is homotopic to η.
Characteristic classes are very important creatures in mathematics. When they apply to the tangent

bundle and valuate on the fundamental class, they turn into the corresponding numbers. However, as a
convention, we call Euler number as Euler characteristic as well. We have already applied them in our
third section to prove that a manifold there can be an oriented boundary. What we’ve done in the fourth
section is, in fact, to show that the Euler class for the tangent bundle can be expressed by the form of
the curvatures.

2. Since ξ can be any vector bundle on M, it’s natural to consider it as any bundle not just a tangent
bundle. In particular, if Mm is a closed orientable submanifold embedded in an orientable Riemannian
manifold N2m, then we can consider the normal bundle TM 
 . To specify the result, we need to define
a new term: Gauss torsion.

With a smoothly moving frame � P
 e1 
6�F�F��
 en � attaching to every point P on N, there are forms ωi 

ωi j � � ω ji 
 Ωi j according to the equations:

dP � Σiωiei 

dei � Σ jωi je j 


Ωi j � dωi j � Σkωikωk j �
It turns out that � ωi j � and � Ωi j � are the Cartan connection forms and curvature forms on N. We define
the Gaussian torsion θ of M in N by:

θ �(� � 1 � l 1
22lπl l!

Σε % i & + θi1i2 L �E�F� L θim $ 1im 
 if m � 2l;

θ : � 0 
 if m is odd. Here θi j � Ωi j � Σm
α � 1ωiαω jα, i 
 j running through m

�
1 to 2m. Then we have the

following theorem in [C2]:
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Theorem 4.3. If Mm is a closed orientable submanifold embedded in an orientable Riemannian mani-
fold N2m, then , M θ � χ � TM 
*� where θ is the Gaussian torsion of M in N.

3. Finally, with the same thought, we can try to extend the Gauss-Bonnet theorem for manifolds with
boundary. We have the following theorem in [S]:
Theorem 4.4. Let M be a compact oriented Riemannian manifold with boundary, of even dimension
n=2m, with tangent bundle π : TM �!� M, and associated sphere bundle π0 � π Z S : S ��� M. Let D be
a connection on the principal bundle p : SO � T M � �Q� M, with curvature form K, let Ω be the unique
n-form on M with p 8 Ω �(� π �4� mP f � K ��
 and let Φ be an (n-1)-form on S with

π 80Ω � dΦ 

Finally, let ν : ∂M �!� S be the outward pointing unit normal on ∂M. Then

'
M

Ω � χ � M � � '
∂M

ν 8 Φ �
As we said before, Chern in [C1] didn’t use the characteristic classes to prove the Theorem 4.2,

instead he explicitly constructed a form Φ with π 80Ω � dΦ, which appears here. So it is very useful to
figure this form Φ out when we are seeking the generalized Gauss-Bonnet theorem for manifolds with
boundary.

5. OTHER POINTS OF VIEW

5.1. Polyhedra. Admittedly, all of the long story about the Gauss-Bonnet theorem above comes from
its original polyhedral version. The ancient Greeks already knew its primary case: The sum of the
interior angles of a triangle equals π. The first generalization from this primary case involves the
exterior angle which is used more conveniently than the interior angle: The sum of the exterior angles
of a polygon equals 2π.

Now, let us approximate a polygon by a smooth simple closed curve c. Consider the unit vectors
tangent to c at A and B. Translate these vectors to the origin, keeping the initial and translated vectors
parallel. Then the arc on S1 cut off by the two translated vectors, i.e. the original exterior angle,
represents the angle the curve has turned through. The same result follows if we replace the unit
tangent vector by the unit normal vectors. And in the case of normal vectors, the map has its name as
Gauss map we talked before.

A

B A

B

Now, we have some correspondence in terminology: (denote “correspond” by “: : ”)
The Gauss curvature of the curve
: : the rate of change of the tangent vector
: : the rate of change of the normal vector
: : the exterior angle,
and,
the integral of the Gauss curvature
: : the total change of the tangent vector
: : the total change of the normal vector (i.e. the degree of the Gauss map)
: : the sum of the exterior angle.
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So in the polyhedral version, the Gauss curvature is naturally defined as some kind of solid angle.
We’ll develop the definition of the Gauss curvature and the tangential curvature (which will appear in
the later theorem) in three steps:

1. Given an open convex polyhedron P in V �[� N, we define the tangential cones of P near any point
p � V 
 and face F in P
 and infinity ∞ as follows:

CP � p �!�@? v � V Z\� ε � 0 s � t � p � tv � P
�� 0 � t � ε AM

CP � F �!� CP � q ��
 q � F is arbitrarily fixed 

CP � p �!�@? � v � V Z\� q � P s � t � q � tv � P
]� t � 0 AM�

With these cones we can associate them with their normal corn in a usual way, namely

C
8 �@? y � V

8 Z y � v ��3 0 
^� v � C AM�
2. Define the tangential curvature τP � F ��
 τP � ∞ � and Gaussian curvature κP � F � , κP � ∞ � as

τP � F ���(� � 1 � dim % F &^_
n � CP � F �M` Bn �4) _ n � Bn ��
 n � 0 


τP � ∞ ���@� � 1 � dim % P & _
n � CP � ∞ �M` Bn �4) _ n � Bn ��
 n � 0 


τP � F ���(� � 1 � dim % P & � dim % F & _
N � C 8P � F �Y` BN ��) _ N � BN ��


τP � ∞ ���@� � 1 � dim % P & � � � 1 � dim % P & � dims
% CP
% ∞ &a&b_

N � C 8P � ∞ �M` BN �4) _ N � BN ���
where BN is the unit ball of V 8 centered at the origin, the dual space V 8 is identified with V . Bn �
BN ` CP � P ��
 and _ N and _ N are Lebesgue measures on V and CP � P � respectively, and dims � CP � ∞ ���
denotes the greatest dimension of subspaces of V contained in CP � ∞ � .

3. For every polyhedron P
 we can have a decomposition c of it, which is a finite collection ? Pi A of
open convex polyhedra such that P �ed iPi � With the decomposition, we can extend the definition of the
tangential curvature and the Gaussian curvature to a polyhedron by summation:

τP � F ��� ∑
D #gf and F is a face in D

τD � F ��

τP � ∞ �>� ∑

D #gf τD � ∞ ��

κP � F �!� ∑

D #gf and F is a face in D

κD � F ��

κP � ∞ �!� ∑

D #gf κD � ∞ ���
[Ch] shows that the definitions are independent of the choice of decompositions.

It turns out, in our case of polygon P, the Gauss curvature at each vertex is 1
2π (the exterior angle). If

we denote the Gauss curvature at point p as κP % p & , then we have

∑
p # vertices of P

κP % p & � 1 � χ � the closed disk �!� χ � P ���
This is something well-known in the ancient time. People now greatly generalize it, and make it even
work for non-locally-compact P (that’s where ∞ in the following formula comes out). We have,

Theorem 5.1. For a Euclidean or Riemannian polyhedra P,

∑
p # ν hY5 ∞ 7 κP % p & � χ � P �

where ν is the set of all vertices of P. [Ch]
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It is meaningful to consider such non-locally-compact polyhedra, because, in differential geometry,
we have great properties for our objects—the manifolds, such as locally compactness and second count-
ability; however, we can’t expect these properties any more when we are discussing the topological
ones. Moreover, the generalized Gauss-Bonnet theorem is the dual of generalized Gram-Sommerville
formula:

∑
F #9iIhY5 ∞ 7 τP � F ��� τP � ∞ � � ΣN

k � 0τk � P
�j/�!� 0

where j is the collection of faces of P and τk � P
]j/��� ΣF #9i6H dim % F &a� kτP � F � . This formula also works
without asking P to be locally compact. The duality is demonstrated in [Ch].

5.2. Probability. Since the appearance of Bismut’s probabilistic proof of the local Atiyah-Singer in-
dex theorem (Bismut [B]) (for the Dirac operator on spinor bundles), there have appeared many works
to reprove various forms of index theorems by probabilistic and analytic methods. And the Gauss-
Bonnet theorem is one of the results.

The proof of the Gauss-Bonnet theorem is built up by three steps.
First, we construct a smooth heat kernel derived from the heat equation on the manifold, and compute

its “supertrace”. To be more precise, for a compact manifold M 
 consider the heat equation on a
differential form α � α � t 
 x � on M:

∂α
∂t
� 1

2 k Mα 
 α � 0 
6+l�!� α0

where k M is the Hodge-de Rham Laplacian on Γ � Λ 8 M ��
 and Λ 8 M denotes the set of differential forms
on M. There is a probabilistic method to solve this heat equation. ([IW], [P]) Namely, there is a smooth
heat kernel

et m M G 2 � x 
 y � : Λ 8yM �!� Λ 8xM

with respecting to the Riemannian volume measure such that the solution is given by

α � t 
 x �>� '
M

et m M G 2 � x 
 y � α0 � y � dy

The heat kernel has the following two properties:
(i) et m M G 2 � x 
 x � : Λ 8xM �!� Λ 8xM is a degree-preserving map,
(ii) If we define a supertrace Φ � T � for a degree-preserving linear map T : Λ 8 V ��� Λ 8 V , by

Φ � T ��� n

∑
p � 0
� � 1 � nTr � T Z ΛpV ��


then, '
M

Φ ? et m M G 2 � x 
 x �4A dx � ∞

∑
i � 0

eµit G 2 + Σn
p � 0 � � 1 � pdimE p

i 

where µi is the eigenvalue of k M, and E p

i is the subspace made up by p-forms in the corresponding
eigenspace of µi.

Second, we apply Hodge theorem to express the Euler characteristic χ � M � by the supertrace of the
heat kernel. In fact, by Hodge theory, the eigenvalues of k M � µ0 � 0 � µ1 � µ2 �E�F� , and each eigenspace
Ei is finite dimensional with the direct decomposition,

Ei � E0
i W �E�F� W En

i

where EP
i is made up by p-forms. Again by Hodge theory [MS],

Σn
p � 0 � � 1 � p dimE p

i � 0 
 i f µi � 0

� Σn
i � 0 � � 1 � p dim � H p � M ����� χ � M ��
 i f µi � 0 �
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Hence,

χ � M ��� '
M

Φ ? et m M G 2 � x 
 x �4A dx

Finally, we claim that this heat-kernel integrand can be identified with the curvature integrand in the
Gauss-Bonnet theorem. This is what I will not demonstrate here, interested readers may refer to [H].
Moreover [INS] and [Gi] went forward and worked it out for the manifolds with boundary.

Combining these three steps, the Gauss-Bonnet theorem is proven.

6. RELATIONS WITH PHYSICS

From the viewpoint of physics, the optical Berry phase is a direct result of the Gauss-Bonnet theorem.
Berry phase was first pointed out by Berry in 1984 [Be]. A quantum system described by a Hamil-

tonian which depends on cyclic time-dependent adiabatic parameters acquires a phase over and above
the dynamical phase. This extra phase is generally known as the Berry phase.

It was pointed out by Chiao and Wu [CW], that there is an optical version for it. Linearly polarized
laser light is fed into a single optical fiber which is wound N times round a cylinder, making a helix.
If the initial and final directions of the fiber are identical, the photon momentum vector k describes a
closed path. If k is of constant magnitude this path is a closed circuit on the surface of a sphere. This
circuit C will subtend a solid angle Ω � C � at the center of the sphere and Chiao and Wu surmised that,
the change in phase of the laser light would be given by

γ � C �>� � σΩ � C �
where σ �n�@: 1 � is the photon helicity and

Ω � C �>� 2πN � 1 � cosθ �
where θ is the pitch angle of the helix.

They further pointed out that in this experiment the phase change γ � C � implies that the plane of
polarization of the light is rotated through an angle γ � C � ; so the Berry phase is, in this case, and angle
of optical rotation. This predicted rotation was subsequently observed by Tomita and Chiao [TC].

Moreover, L. H. Ryder shows in [R] that the change in phase γ � C �>� � σ � 2π �po C K1dµC � , where K1
denotes the Gauss curvature on C. With this we can prove the optical Berry phase geometrically by the
Gauss-Bonnet theorem.

Let C be a closed smooth path (in particular it can be the circuit), D be the surface in S2 enclosed by
C, then by the Gauss-Bonnet theorem for manifolds with boundary,

2π � '('
D

KdµD
�rq

C
K1dµC

where K and K1 denote the Gauss curvature on D and C respectively.
It’s not hard to find that ,s, D KdµD � area � D ��� Ω � C � , hence, with the equation L.H.Ryder shows,

we have,
γ � C �>� � σΩ � C ���

And this is what was surmised by Chiao and Wu and found by Tomita and Chiao.
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