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Abstract

Given a computably enumerable set B, there is a Turing degree
which is the least jump of any set in which B is computably enumer-
able, namely 0 ′. Remarkably, this is not a phenomenon of computably
enumerable sets. We show that for every subset A of N, there is a Tur-
ing degree, c′µ(A), which is the least degree of the jumps of all sets X
for which A is Σ0

1(X).

1 Introduction

In computability theory there are two fundamental notions, relative com-
putability and relative computable enumerability. The discovery of the exis-
tence of sets that are computably enumerable but not computable initiated
a detailed study of the Turing universe, particularly with respect to relative
computability.

The fundamental operator in computability theory is the jump opera-
tor, so named because it raises the information content of a set, that is
A <T A′. From the point of view of arithmetical complexity this operator
can be thought of as adding an existential quantifier to the complexity of A,
namely A′ is Σ0

1(A).
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In this paper we are concerned with the relationship between relative
computability and relative computable enumerability of subsets of N. In par-
ticular, given a set A, A can be enumerated from many sets X. For instance if
A is a computably enumerable set, then it can be enumerated from the empty
set and hence from all sets X. Therefore it is natural to seek to understand
the set

C(A) = {X | A ∈ Σ0
1(X)},

for sets A, namely the set of sets from which A can be enumerated. We can
also consider the degrees of members of this set. For example if A is the
complement of a computably enumerable set then deg(A) is the least Turing
degree of members of C(A). However, there are sets A for which C(A) has
no member of least Turing degree. In [3], using a finite extension argument,
Richter proves that

Theorem 1 There is a non-c.e. set A such that A is c.e. in two sets B and
C with B and C forming a minimal pair.

This yields the desired result.

Corollary 2 There is a set A such that C(A) = {X | A ∈ Σ0
1(X)} has no

member of least Turing degree.

Proof: Take A, B and C as in Theorem 1. Then A cannot be Σ0
1 in a set

D for which D 6T B and D 6T C, because B and C form a minimal pair,
implying that D is computable. This contradicts A being a non-c.e. set.

So not every set is computably enumerable in some set of least Turing-degree.
In fact it is possible to strengthen Richter’s result to make A of non-c.e.
degree and we sketch a proof of this in section 2.

With our main result we show that all pathologies disappear when one
looks at the 1-jump version of C(A). We define

C ′(A) = {X ′ | A ∈ Σ0
1(X)}.

We prove the following result.

The Main Theorem For all A ⊆ N there is an F ∈ C(A) such that for all
X ∈ C(A), F ′ 6T X ′.
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That is for all sets A, C ′(A) always has a member of least Turing degree.
We denote this least degree by c′

µ(A). We can immediately make the following
observations from the existence of c′

µ(A) for all sets A.

1. c′
µ(A) 6 degT (A′).

2. For any computably enumerable set W, c′
µ(W ) = 0 ′.

3. For any low set L, c′
µ(L) = 0 ′.

4. If A = B ⊕ B then A ∈ Σ0
1(X) iff A 6T X, and so it follows that

A′ ∈ c′
µ(A).

5. If A is a 1-generic set (or in fact any GL1 set) then A ∈ Σ0
1(X) implies

that A′ 6T X ′, and therefore it follows from (1) that A′ ∈ c′
µ(A).

6. Soare and Stob [5] have shown that above every non-zero c.e. degree
a there is a non-c.e. degree which is c.e. in a . It follows that above
every low computably enumerable set L there is a non-computably
enumerable set A such that c′

µ(A) = 0 ′.

7. We have an inversion theorem as follows. Let a > 0 ′. Then by the
Friedberg Jump Inversion theorem there is a degree b such that b ′ = a .
Suppose B ∈ b and consider the set B⊕B ∈ b. Then c′

µ(B⊕B) = a .

Towards generalising the main theorem we make the following definition.

Definition 3 Suppose A is a subset of N. Define

C(n)(A) = {X(n) | A ∈ Σ0
n(X)}.

We denote the least Turing degree of members of C(n)(A) by c
(n)
µ (A), if it

exists.

Consider
C(n+1)(A) = {X(n+1) | A ∈ Σ0

n+1(X)}.
Now if A is Σ0

n+1(X) for some set X, then A must be Σ0
n(X ′). Hence

C(n+1)(A) = {X(n+1) | A is Σ0
n(X ′)}

= {(X ′)(n) | A is Σ0
n(X ′)}

⊆ C(n)(A).

The main theorem extends as follows.
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Theorem 4 For all A ⊆ N and n ∈ N, c
(n)
µ (A) exists.

So C(n)(A) always has a member of least Turing degree and we prove this in
section 3.

When studying effective versions of classical mathematics, a natural way
to assign a degree of unsolvability to a structure, such as a linear order or a
group, is to take the least degree of presentations B isomorphic to the given
structure A. However a least degree need not always exist. The motivation
for studying C ′(A) arose from an observation of Downey and Jockusch in [1]
related to presentations of torsion free abelian groups. In section 4 we make
an application of the main theorem to a question of Downey and Jockusch.

2 Extending A Theorem Of Richter

We briefly sketch a proof of the strengthened theorem of Richter mentioned
in the introduction.

Theorem 5 There is a d-c.e. set A of non-c.e. degree and sets B and C
such that A is Σ0

1(B) and Σ0
1(C), and B and C form a minimal pair.

We must meet the following requirements for all e, i, j ∈ N where V is a
computably enumerable operator.

P : A = V (B) & A = V (C),

Ne : Φe(B) = Φe(C) = g total =⇒ g is computable,

Re,i,j : A 6= Φi(We) ∨We 6= Ψj(A).

All the strategies are the obvious ones. To meet the P requirement we
enumerate V -axioms of the form 〈x, b(x, s)〉 for x ∈ A and ensure b(x, s) ∈ B,
and similarly for C. To meet an Re,i,j-requirement we use the Cooper-Lachlan
construction of a set of properly d-c.e. degree. The only interesting point to
discuss is the following conflict between a minimal pair requirement N of
higher priority than an Re,i,j-requirement.

Activity for an Re,i,j-requirement requires the extraction of b(x, s+1) from
B and c(x, s + 1) from C. This conflicts with the N-requirement wanting to
preserve at least one of B and C. Suppose then that N is of higher priority
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than Re,i,j. Also suppose we extract x from A at stage s + 1 for the sake
of Re,i,j and hence extract b(x, s) from B and c(x, s) from C. If we see a
computation

Φ(B)(y)
y[t + 1] 6= Φ(B)(y)

y[s + 1]

for some expansionary stage t + 1 > s + 1, then we can return B to its
configuration at stage s + 1 on the use of the computation Φ(B)(y)

y[s + 1]
when

Φ(B)(y)
y[s + 1] = Φ(C)(y)

y[s + 1] 6= Φ(C)(y)
y[t + 1] = Φ(B)(y)

y[t + 1].

This will involve enumerating/extracting various b(z, s) into/from B at stage
t + 1. Such action could injure the P requirement as there may now be some
z with A(z)[t + 1] 6= V (B)(z)[t + 1]. Therefore we correct the P requirement
by enumerating into A those z ∈ V (B)[t+1] that are currently not in A, and
also correct V (C) by enumerating new axioms 〈z, c(z, t + 1)〉 ∈ V [t+1] with
a suitably large new c(z, t+1). For those z 6∈ V (B)[t+1] that are currently in
A we may not be able to correct via A-extraction of z because this may then
require C-extractions injuring the computation Φ(C)(y)

y[t+1]. Therefore for
those z ∈ A[t]−V (B)[t+1] we enumerate new B-axioms with suitably large
new b(z, t + 1). This action wins the N requirement via a diagonalisation,
maintains a correct V for the P-requirement, but potentially loses Re,i,j.
However this strategy will only present finite injury to Re,i,j.

It should now be clear how to carry out a construction to meet all the
requirements and hence prove the theorem.

3 The Proof Of The Main Theorem

We now turn to the proof of the Main Theorem and its generalisation. Sup-
pose A is a subset of N. Recall we define

C(n)(A) = {X(n) | A ∈ Σ0
n(X)},

and denote the least Turing degree of the members of C(n)(A) by c
(n)
µ (A), if

it exists.
In the sequel we will prove Theorem 4, namely that for all A ⊆ N, c

(n)
µ (A)

exists for all n ∈ N. However we begin by proving the special case n = 1 to
motivate the proof of the full theorem.

The Main Theorem For all A ⊆ N there is an F ∈ C(A) such that for all
X ∈ C(A), F ′ 6T X ′.
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Proof: Given a set A we want to construct a set F such that A is Σ0
1(F ) and

F ′ 6T X ′ for all sets X ∈ C(A). Originally the first two authors proved the
theorem using a full approximation construction. The third author subse-
quently discovered an elegant proof using forcing with finite conditions which
is the proof we present below.

For background on forcing arguments in computability theory we direct
the reader to Lerman [2]. We now define our notion of forcing.

Definition 6 Let X ⊆ N.

• The partial order PX
1 is the set of finite enumerations of subsets of X

ordered by extension.

So an element of PX
1 is a function, p say, from {0, 1, . . . , k} into X, for

some k ∈ ω.

• For p and q in PX
1 , we say p extends q in PX

1 and write p >X
1 q, if the

graph of p is contained in the graph of q.

• We use 1 to denote the empty function, and of course 1 ∈ PX
1 .

We fix a PA
1 generic enumeration G1 of A. Clearly A is Σ0

1(G1) since
y ∈ A if and only if there is an x such that (x, y) ∈ G1.

Let F be the forcing relation for Π0
1(G1) sentences. That is,

F = {(p, ϕ) | p 6∈ PA
1 or (ϕ ∈ Π0

1(G1) and p 6
A
1 ϕ)}.

We first observe that A 6T F as follows. Let e be an index such that
Φe(Y )(x)

x for all oracles Y and all x ∈ N. Let ϕ be the Π0
1(G1) sentence

∀x(Φe(G1)(x)
x). Then (p, ϕ) ∈ F if and only if p is not a forcing condition.

Now, let qn be the constant function from the set {0} to n. Then qn is a
forcing condition if and only if n ∈ A. Hence n ∈ A if and only if (qn, ϕ) 6∈ F.

We now prove two lemmas to show that F witnesses the existence of
c′

µ(A).

Lemma 7 F 6T X ′ for all X ∈ C(A).

Proof: For any p and ϕ, (p, ϕ) ∈ F if and only if either

1. p 6∈ PA
1 , or
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2. there is a proper extension q of p in PA
1 and an x ∈ N such that

q 
A
1 ¬ϕ(x).

Since PA
1 6T A, in the first case we have that p ∈ PA

1 is computable in
X ′ for any set X for which A is Σ0

1(X). In the second case, note that ¬ϕ is
a bounded formula, and that we have an existential condition that refers to
a finite amount of positive information about A. This condition is Σ0

1(X) for
sets X for which A is Σ0

1(X), and hence for such an X, case 2 is computable
in X ′. Therefore F 6T X ′ for any X such that A is Σ0

1(X).

Lemma 8 There is a set G such that A is Σ0
1(G) and G′ 6T F.

Proof: We construct G 6T F so that every fact about G′ is forced in the
sense of PA

1 .

Step 0 : Let p0 = 1.

Step s + 1 = 2e :

1. If (ps, ϕ) ∈ F, then let ps+1 be the least extension of ps in PA
1 such that

ps+1 
A
1 ¬ϕ.

2. Otherwise, (ps, ϕ) 6∈ F. Let ps+1 = ps since ps 
A
1 ϕ.

Step s + 1 = 2e + 1 :
Let x be the least number in A not in the range of ps. Let ps+1 be the

least extension of ps with x in its range.
At the end of the construction define G =

⋃
s∈N ps.

Now clearly A is Σ0
1(G) since y ∈ A if and only if there is an x such that

(x, y) ∈ G. Observe that for case 1 of the even stages of the construction,
we can find ps+1 computably in A. Hence A⊕F is an oracle that can decide
every Π0

1 condition about G. Therefore G′ 6T A⊕ F.
We have already seen that A 6T F and hence G′ 6T F. Consequently

there is a set G such that A is Σ0
1(G) and G′ 6T F.

By Lemmas 7 and 8 c′
µ(A) exists and is degT (F ). This completes the

proof of the Main Theorem.

We now prove the general result as stated in Theorem 4.

Theorem 4 For all n ∈ N, C(n)(A) = {X(n) | A is Σ0
n(X)} has a member of

least Turing degree.
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Proof: Towards a generalisation of our notion of forcing in the n = 1 case we
make the following definition.

Definition 9 For a set X ⊆ N, we define the partial order PX
m by induction

on m.

• PX
1 is defined as in Definition 6, namely as the set of finite enumerations

of subsets of X, ordered by extension. So a condition in PX
1 is given

by a function p such that the domain of p is of the form {0, 1, . . . , k}
and its range is a subset of X; for p and q in PX

1 , p >X
1 q if the graph

of p is contained in the graph of q.

• An element of PX
m is a sequence (pm, pm−1, . . . , p1) such that

– pm ∈ PX
1 and

– for all i less than m, pi ∈ P
pi+1

1 , where we regard the graph of pi+1

as a subset of N and pi+1 as the complement of the graph of pi+1.

For
−→
p and

−→
q in PX

m ,
−→
p >X

m

−→
q if for each i less than or equal to m,

the graph of pi is contained in the graph of qi.

So for a set X ⊆ N and m ∈ N, our notion of forcing is 〈PX
m , 6X

m 〉. A PX
m -

generic filter is Turing equivalent to a sequence (Gm, Gm−1, . . . , G1) such that
Gm is a function from N onto X and for all i less than m, Gi is a function from
N onto the complement of the graph of Gi+1. We will identify the generic filter
with its associated sequence of functions. We also introduce the following
notation to aid the presentation of the forcing conditions (sequences) in PX

m .

Notation 10 • We use 1 to indicate the empty function.

• We use
−→
pm

X
to indicate an element of PX

m , but we will often simply

write
−→
pm if it is clear to which set of conditions it belongs. We write

(pm, . . . , pk+1,
−→
qk ), to denote that

−→
qk is an element of P

pk+1

k . Similarly,

if we write (
−→
1 ,
−→
qk ) for an element of PX

m , then we are referring to the

element
−→
pm such that for all i between m and k + 1, pi = 1, and for

all i between k and 1, pi = qi. Given
−→
pm

X
, we use

−→
pk

Y
to indicate the

sequence consisting of the last k elements of
−→
pm

X
viewed as an element

of PY
k . Of course, this notation can only be applied when

−→
pk ∈ PY

k .
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• We use GX as the symbol in the forcing language which refers to the
generic filter with respect to a set X. We use GX

k as the symbol in the
forcing language which refers to the kth function associated with the
generic filter GX .

Before specializing to the set A of Theorem 4, we prove two lemmas whose
purpose is to establish the arithmetical complexity of the relation

−→
pm 
X

m ϕ.
for Π0

n(GX
1 ) sentences ϕ.

Lemma 11 Suppose ϕ is a Π0
n(GX

1 ) sentence, m > n + 1, and
−→
pm 
X

m ϕ.

Then for every Z, if
−→
pm

Z
∈ PZ

m then (
−→
1 ,
−−→
pn+1) 
Z

m ϕ.

Proof: Let Z be a subset of N. We proceed by induction on n. We treat the
cases when n is either 1 or 2 directly.

First, n = 1. Suppose that ϕ is (∀x)ϕ0(x, GX
1 ), ϕ0 is a Π0

0(G
X
1 ) formula,

that
−→
pm 
X

m ϕ and
−→
pm

Z
∈ PZ

m. Then for every q1 ∈ Pp2

1 and for every
x ∈ N it cannot be the case that ¬ϕ0(x, q1). (Otherwise (pm, . . . , p2, q1) would

extend
−→
pm and force the negation of ϕ.) Consequently, there cannot be an

x ∈ N, a Z contained in N, and an extension
−→
q of (

−→
1 ,
−→
p2) in PZ

m such that
−→
q 
Z

m ¬ϕ0(x, GX
1 ). So, (

−→
1 ,
−→
p2) 
Z

m ϕ, as required.
Second, n = 2. As above, suppose that ϕ is (∀x)(∃y)ϕ0(x, y, GX

1 ), that
−→
pm 
X

m ϕ and that
−→
pm

Z
∈ PZ

m. To show (
−→
1 ,
−→
p3) 
Z

m ϕ, let
−→
rm

Z
be a con-

dition extending (
−→
1 ,
−→
p3) in PZ

m. Then (pm, pm−1, . . . , p3,
−→
r2 ) extends

−→
pm in

PX
m . (Note that (pm, pm−1, . . . , p4,

−→
r3 ) might not be a condition.) Let x be

an element of N. Since
−→
pm 
X

m ϕ, there is a y0 and there is a condition
−→
qm

extending (pm, pm−1, . . . , p3,
−→
r2 ) in PX

m such that
−→
qm 
X

m ϕ0(x, y0, G
X
1 ). Fur-

ther, we may assume that the bounds on the quantifiers in ϕ0(x, y0, G
X
1 ) are

less than the domain of q1. Consequently, for every function G1 extending
q1, ϕ0(x, y0, G1) holds. In turn this implies (rm, . . . , r2, q1) 
Z

m ϕ0(x, y0, G
X
1 ),

and so
−→
rm could not force (∀y)¬ϕ0(x, y, GX

1 ). Since no extension of (
−→
1 ,
−→
p3)

can force a counterexample to the truth of (∀x)(∃y)ϕ0(x, y, GX
1 ), we are able

to conclude (
−→
1 ,
−→
p3) 
Z

m ϕ.
Now for the inductive case, which is modeled on the case of n = 2 using

induction in place of the fact that forcing is the same as truth relative to all
generic filters. Suppose ϕ is a Π0

n(GX
1 ) sentence (∀x)(∃y)ϕn−2 with ϕn−2 a

Π0
n−2(G

X
1 ) formula, and suppose that

−→
pm 
X

m ϕ and
−→
pm

Z
∈ PZ

m.
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To show that (
−→
1 ,
−−→
pn+1) 
Z

m ϕ, let
−→
rm be a condition extending (

−→
1 ,
−−→
pn+1)

in PZ
m. Note that (pm, pm−1, . . . , pn+1,

−→
rn) extends

−→
pm in PX

m . Let x be

in N. Since
−→
pm 
X

m ϕ, there is a y0 and there is a condition
−→
qm extending

(pm, pm−1, . . . , pn+1,
−→
rn) in PX

m such that
−→
qm 
X

m ϕn−2(x, y0). By induction,

(
−→
1 ,
−−→
qn−1) 
Z

m ϕn−2(x, y0). Now note that (rm, rm−1, . . . , rn,
−−→
qn−1) extends

−→
rm

in PZ
m. Consequently,

−→
rm cannot force x to be a witness for the negation of

ϕ. Since no extension of (
−→
1 ,
−−→
pn+1) can force the negation of ϕ in PZ

m, we

may conclude that (
−→
1 ,
−−→
pn+1) 
Z

m ϕ.

Lemma 12 For ϕ a Π0
n(GZ

1 ) sentence, m > n + 1, and
−→
pm

Z
∈ PZ

m, the

relation
−→
pm 
Z

m ϕ is Π0
n.

Proof: Let ϕ be a Π0
n(GZ

1 ) sentence, m > n + 1, and
−→
pm

Z
∈ PZ

m.

Then by Lemma 11 relative to Z,
−→
pm 
Z

m ϕ if and only if (
−→
1 ,
−−→
pn+1) 
∅

m ϕ.

(Here
−→
1 may be empty.) Note that P∅

m is a computable partial order. The
usual analysis of forcing shows that a condition’s forcing a Π0

n sentence in
P∅

m is a Π0
n condition.

We are now in a position to specialize to A and prove lemmas for a general
n ∈ N in an analogous fashion to the lemmas for n = 1. In the n = 1 case
we saw that A ∈ Σ0

1(G1) where G1 was PA
1 generic. For a given n ∈ N, the

analogous fact is as follows.

Lemma 13 If G = (Gn, . . . , G1) is PA
n generic, then A is Σ0

n relative to G1.

Proof: Proceed by induction on n.
When n is equal to 1, G is (G1), and G1 maps N onto A. Consequently,

A is computably enumerable in G1 and hence Σ0
1(G1).

For n greater than 1, say G is (Gn, Gn−1, . . . , G1) as indicated earlier. By
an inductive argument, the complement of Gn is Σ0

n−1 in G1, and so Gn is
Π0

n−1(G1). But then y ∈ A if and only if there is an x such that (x, y) ∈ Gn,
and so A is Σ0

n(G1).

Now define

Fn = {(−→pn

A
, ϕ) :

−→
pn 6∈ PA

n or (ϕ ∈ Π0
n(GA

1 ) and
−→
pn 6
A

n ϕ)}.

We now prove the analogous lemma to Lemma 7.
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Lemma 14 If A is Σ0
n(X) then Fn is computable in X(n).

Proof: Since A is Σ0
n(X) and

−→
pn’s belonging to PA

n depends only on finitely
much positive information about A, PA

n is Σ0
n(X). Thus, whether a sequence

−→
pn is an element of PA

n is computable in X(n).

Given that
−→
pn ∈ PA

n and ϕ = (∀x)ϕn−1 is Π0
n(GA

1 ),
−→
pn fails to force ϕ

if and only if there is an x and an extension
−→
qn of

−→
pn in PA

n such that
−→
qn 
A

n ¬ϕn−1(x). By Lemma 12, whether
−→
qn 
A

n ¬ϕn−1(x) is a Π0
n−1 condition

on qn. Consequently,
−→
pn fails to force ϕ in PA

n is a Σ0
n(X) property of

−→
pn,

and hence is computable in X(n).

It remains to prove the analogue of Lemma 8, namely:

Lemma 15 There is a set G such that A is Σ0
n(G) and G(n) 6T Fn.

Proof: As in the case when n = 1, we construct G computably in Fn so that
every Π0

n sentence about G is decided by a condition in PA
n .

We are now able to conclude our theorem from Lemmas 14 and 15 by
taking c

(n)
µ = degT (Fn).

This completes the proof of Theorem 4.

4 Torsion free abelian groups

As mentioned in the introduction, there is an application of the Main Theo-
rem to effective algebra, answering a question of Downey and Jockusch in [1].
We direct the reader to Downey [1] for any details that do not appear below
and for a survey of effective algebra. Recall that a group (G, ·, =) is said to
have torsion if some element has finite order, and torsion-free otherwise. If
G is isomorphic to a subgroup of Qn, then the least such n is called the rank
of the group. The simplest of the torsion-free abelian groups are those of
rank 1, that is those that are isomorphic to a subgroup of (Q, +, =).

Let p1, p2, . . . be the prime numbers in increasing order and let G be a
subgroup of Q. The p-height hp(a) of an element a ∈ G is defined as

hp(a) =

{
k if k is greatest such that pk | a in G

∞ if pk | a for all k
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and we define the characteristic of a to be the sequence of the p-heights of a,

χ(a) = (hp1(a), hp2(a), hp3(a), . . .).

Notice that since G has rank 1, if a, b ∈ G with a, b 6= 0 then χ(a) and
χ(b) are equivalent modulo finite differences. We write χ(a) =∗ χ(b) and
define the type of χ(G) to be the =∗ equivalence class of χ(a) for any a 6= 0
in G. The classical theorem of Baer is that if G and H have rank 1, then
G ∼= H if and only if G and H have the same type.

The standard type of G, S(G), is defined as

S(G) = {〈i, j〉 | j 6 the ith member of χ(G)}

for some fixed a ∈ G. If G is X-presented, then S(G) is Σ0
1(X). We say that

a group has finite type if for all i,

|N[i] ∩ S(G)| < ∞.

That is, G has no elements of infinite height. In what follows we often identify
a group G with a presentation of it.

Recall a group has degree z if z is the least degree in

{deg(B) | B ∼= A}.

A group A has 1-degree (jump degree) z if z is the least degree in

{deg(B)′ | B ∼= A}.

Theorem 16 (Downey, after Knight) Let a be any degree. There exists
a torsion free abelian group G of rank one and finite type with degree a .

Proof: Let A ∈ a . Let G be the rank one group define via the type sequence
(an)n∈N such that an = 1 if n ∈ A ⊕ A and an = 0 otherwise. Clearly there
is a presentation of G computable in A. Conversely, suppose H ∼= G. Then
H has type sequence (an)n∈N. The type sequence of H is Σ0

1(H) and hence
A⊕ A is Σ0

1(H). Hence A 6T H.

The above notions led Downey and Jockusch to make the following ob-
servation.
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Theorem 17 (Downey and Jockusch [1]) c′
µ(X) exists for all sets X if

and only if all torsion-free abelian groups of finite type and of rank 1 have
1-degree.

Proof: We present a proof due to Downey and Solomon1. We first prove the
following set equivalence for G, a torsion free abelian group of rank 1 and
finite type,

{degT (H) | H ∼= G} = {degT (Y ) | S(G) ∈ Σ0
1(Y )} (†)

⊆: If H ∼= G then S(H) =∗ S(G) and S(H) is Σ0
1(H). Therefore S(G) is

Σ0
1(H).

⊇: Suppose S(G) is Σ0
1(Y ). We show that there is a group H ∼= G such that

H ≡T Y. We can construct H 6T Y by using the enumeration of S(G) from
Y to add new divisors to H whenever necessary in the following way.

We split the proof into two cases: when S(G) has a finite number of
elements of the form 〈i, j〉 with j > 1 and when it has an infinite number
of such elements. The pairs 〈i, 0〉 are in S(G) for every i, but we are free to
ignore these because they add nothing to the structure of the group.

Assume that S(G) has an infinite number of elements of the form 〈i, j〉
with j > 1. Since S(G) is Σ0

1(Y ), there is a 1-1 function f : N → S(G)
which is Y -computable and enumerates the pairs 〈i, j〉 ∈ S(G) with j > 1.
Notice that if f(k) = 〈i, j〉 and j > 1, then there is some m such that
f(m) = 〈i, j − 1〉.

Let H be the torsion free abelian group with the computable set of gen-
erators h and ak for k ∈ N and the following relations. If f(k) = 〈i, j〉
and j = 1, then pi · ak = h and if j > 1, then pi · ak = am for m such
that f(m) = 〈i, j − 1〉. The intuition is that by induction, we have that
pj−1

i ·am = h, which implies that pj
i ·ak = h. Therefore pj

i divides h and 〈i, j〉
appears in S(H). Formally, elements of H are finite sums of the form

n · h +
∑
k∈K

mk · ak,

where K is a finite set and for each k ∈ K, 1 6 mk < pi where f(k) = 〈i, j〉.
Addition is done in the obvious way, using the relations above to reduce the

1No proof of this result has appeared in print. Solomon noted a flaw in our original
proof in an earlier version of this paper.
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coefficients in the resulting sum. Because f is Y -computable, it is clear that
H 6T Y .

Since G is a torsion free group with rank 1, G is isomorphic to the sub-
group of Q generated by 1 and 1/pj

i for each 〈i, j〉 ∈ S(G) with j > 1. We
equate G with this subgroup of Q and define a map α : H → G by extending
h 7→ 1 and ak 7→ 1/pj

i with f(k) = 〈i, j〉 across H in the natural way. Be-
cause α respects the relations in the definition of H, it is a homomorphism
and because it maps onto all the generators of G, it is onto. To see that α is
1-1, notice that the generators in G satisfy exactly the same relations as the
generators of H. Hence, α is an isomorphism as required.

We are left to consider the case when S(G) contains only finitely many
elements of the form 〈i, j〉 with j > 1. Assume S(G) has m such elements,
which we denote by 〈i1, j − 1〉, . . . , 〈im, jm〉. We define H to be the torsion
free abelian group generated by h and ak for 1 6 k 6 m and subject to the
relations pjk

ik
·ak = h. In this case, H is a computable group and by arguments

similar to those in the previous case, H is isomorphic to G.
Assuming G is not the trivial group, then H is infinite. To construct H0

such that H0
∼= H with H0 ≡T Y we make an isomorphic copy of H with

domain Y. Let f : dom(H) 7→ Y be a Y -computable bijection. Define the
group structure on Y via f−1. Then H0

∼= H and H0 ≡T Y.
This completes the proof of (†).
Now suppose c′

µ(X) exists for all sets X. Then there is a least element in
the set

{degT (H)′ | H ∼= G}.
Hence G has 1-degree.

Conversely let X be any set. Let S(G) contain

{〈n, 0〉 | n > 0} ∪ {〈n, 1〉 | n ∈ X}.

Then for any set Y, X is Σ0
1(Y ) if and only if S(G) is Σ0

1(Y ). So for any set
X there is a set S(G) such that

{degT (Y ) | X ∈ Σ0
1(Y )} = {degT (Y ) | S(G) ∈ Σ0

1(Y )}.

It follows that G having 1-degree implies c′
µ(S(G)) exists, from which c′

µ(X)
must exist.

Hence it follows from the Main Theorem that every torsion-free abelian
group of finite type and rank 1 has 1-degree.
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5 Questions

The Main Theorem raises many natural questions. Analogous questions ap-
ply to c

(n)
µ .

1. Given a degree a > 0 ′, characterise the sets X for which a = c′
µ(X).

2. Characterise the sets X for which X ′ ∈ c′
µ(X).

3. Characterise the sets X for which c′
µ(X) ∈ 0 (n) for n > 0.

4. Suppose A ∈ c′
µ(X). What can be said about the Turing degrees of

sets Y for X 6T Y 6T A?

5. Suppose A ∈ c′
µ(X). What can be said about the Turing degrees of

sets Y for A 6T Y 6T X ′?

6. Suppose X0 ≡T X1. Under what conditions does

(a) c′
µ(X0) = c′

µ(X1)?

(b) c′
µ(X0) < c′

µ(X1)?

(c) c′
µ(X0) 66 c′

µ(X1) and c′
µ(X1) 66 c′

µ(X0)?

7. A question posed by Jockusch related to 6(a) is the degree-theoretic
version of the Main Theorem. Given a degree a , does the set

{X ′ | ∃A ∈ a(A ∈ Σ0
1(X))}

have least Turing degree?
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