SINGULAR VALUE DECOMPOSITION

Notes for Math 54, UC Berkeley

Let A be an $m \times n$ matrix. We discuss in these notes how to transform the perhaps complicated A into a simpler form, by multiplying it on the left and right by appropriate orthogonal matrices. This is important for many interesting applications.

LEMMA 1. The matrix

$$S = A^T A$$

is a **symmetric** $n \times n$ matrix.

Proof. We recall the matrix formula $(BC)^T = C^T B^T$, which implies that

$$S^{T} = (A^{T}A)^{T} = A^{T}(A^{T})^{T} = A^{T}A = S.$$

The transpose A^T is an $n \times m$ matrix and thus S is $n \times n$.

Since S is symmetric, it has real eigenvalues $\lambda_1, \ldots, \lambda_n$ and corresponding eigenvectors $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ so that

(1)
$$A^{T}A\mathbf{v}_{i} = S\mathbf{v}_{i} = \lambda_{i}\mathbf{v}_{i} \qquad (j = 1, \dots, n)$$

and

 $\{\mathbf v_1,\dots,\mathbf v_n\}$ is an orthonormal basis of $\mathbb R^n$.

LEMMA 2. (i) The following identities hold:

(2)
$$A\mathbf{v}_i \cdot A\mathbf{v}_j = \lambda_j \delta_{ij} \quad (i, j = 1, \dots, n),$$

where

$$\delta_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j. \end{cases}$$

(ii) Furthermore, the eigenvalues of $S = A^T A$ are nonnegative:

$$\lambda_j \geq 0$$
 $(j=1,\ldots,n).$

Proof. We use (1) to calculate that

$$A\mathbf{v}_i \cdot A\mathbf{v}_j = (A\mathbf{v}_i)^T A\mathbf{v}_j = \mathbf{v}_i^T A^T A\mathbf{v}_j = \lambda_j \mathbf{v}_i^T \mathbf{v}_j = \lambda_j \mathbf{v}_i \cdot \mathbf{v}_j = \lambda_j \delta_{ij},$$

since $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ is orthonormal. In particular, $\lambda_j = ||A\mathbf{v}_j||^2 \ge 0$.

Let us now reorder, if necessary, the eigenvalues so that

$$\lambda_1 > \cdots > \lambda_r > \lambda_{r+1} = \cdots = \lambda_n = 0.$$

DEFINITION. The **singular values** of A are the numbers

$$\boxed{\sigma_j = \sqrt{\lambda_j}} \qquad (j = 1, \dots, n).$$

Then

(3)
$$\sigma_1 \ge \cdots \ge \sigma_r > \sigma_{r+1} = \cdots = \sigma_n = 0,$$

and formula (2) implies

(4)
$$||A\mathbf{v}_j|| = \sigma_j \qquad (j = 1, \dots, n).$$

DEFINITION. We write

$$\mathbf{u}_i = \frac{1}{\sigma_i} A \mathbf{v}_i \qquad (i = 1, \dots, r).$$

It follows from (2) and (4) that $\{\mathbf{u}_1, \dots, \mathbf{u}_r\}$ is orthonormal in \mathbb{R}^m , and thus

$$0 \le r \le \min\{n,m\}.$$

We can now use the Gram-Schmidt process to find further vectors $\{\mathbf{u}_{r+1}, \dots, \mathbf{u}_m\}$ so that

 $\{\mathbf{u}_1,\ldots,\mathbf{u}_m\}$ is an orthonormal basis of \mathbb{R}^m .

The key point is that we can use the orthonomal basis $\{\mathbf{u}_1, \ldots, \mathbf{u}_m\}$ of \mathbb{R}^m and the orthonormal basis $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ of \mathbb{R}^n to convert our matrix A into a simpler form. Here is how to do it:

NOTATION. Introduce the $m \times m$ orthogonal matrix

$$U=(\mathbf{u}_1|\mathbf{u}_2|\ldots|\mathbf{u}_m),$$

whose i^{th} column is \mathbf{u}_i (i = 1, ..., m). Likewise, introduce the $n \times n$ orthogonal matrix

$$V = (\mathbf{v}_1 | \mathbf{v}_2 | \dots | \mathbf{v}_n).$$

Then

(5)
$$UU^{T} = U^{T}U = I, VV^{T} = V^{T}V = I.$$

THEOREM 1. We have

(6)
$$U^{T}AV = \begin{pmatrix} \sigma_{1} & 0 & \dots & 0 \\ 0 & \sigma_{2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & O \\ 0 & 0 & \dots & \sigma_{r} & \\ \hline & O & & O \end{pmatrix}.$$

REMARK. Thus if we write Σ for the $m \times n$ matrix on the right hand side of (6), we obtain using (5) the **singular value decomposition (SVD)**

$$A = U\Sigma V^T$$

of our matrix A.

This is similar to the familiar orthogonal diagonalization formula for a symmetric $n \times n$ matrix, but in (6) and (7) the matrix A need not be symmetric nor square.

Proof. Since

$$AV = A(\mathbf{v}_1|\mathbf{v}_2|\dots|\mathbf{v}_n) = (A\mathbf{v}_1|A\mathbf{v}_2|\dots|A\mathbf{v}_n),$$

it follows that

(8)
$$U^{T}AV = \begin{pmatrix} \mathbf{u}_{1} \cdot A\mathbf{v}_{1} & \mathbf{u}_{1} \cdot A\mathbf{v}_{2} & \dots & \mathbf{u}_{1} \cdot A\mathbf{v}_{n} \\ \mathbf{u}_{2} \cdot A\mathbf{v}_{1} & \mathbf{u}_{2} \cdot A\mathbf{v}_{2} & \dots & \mathbf{u}_{2} \cdot A\mathbf{v}_{n} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{u}_{m} \cdot A\mathbf{v}_{1} & \mathbf{u}_{m} \cdot A\mathbf{v}_{2} & \dots & \mathbf{u}_{m} \cdot A\mathbf{v}_{n} \end{pmatrix}.$$

Now if $j \in \{r+1,\ldots,n\}$, then $A\mathbf{v}_j = 0$. If $j \in \{1,\ldots,r\}$ and $i \in \{r+1,\ldots,m\}$, then

$$\mathbf{u}_i \cdot A\mathbf{v}_j = \sigma_j \mathbf{u}_i \cdot \mathbf{u}_j = 0.$$

Finally, if $i, j \in \{1, \dots, r\}$, then

$$\mathbf{u}_i \cdot A\mathbf{v}_j = \frac{1}{\sigma_i} A\mathbf{v}_i \cdot A\mathbf{v}_j = \frac{\lambda_i}{\sigma_i} \mathbf{v}_i \cdot \mathbf{v}_j = \sigma_i \delta_{ij}.$$

Using these formulas in (8) gives (6).

SUMMARY: HOW TO FIND THE SVD

- 1. Diagonalize $S = A^T A$, to find an orthonormal basis of \mathbb{R}^n of eigenvectors $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$.
- 2. Reorder the eigenvalues of S so that $\lambda_1 \geq \cdots \geq \lambda_n \geq 0$.
- 3. Let

$$\sigma_j = \lambda_j^{\frac{1}{2}} \qquad (j = 1, \dots, n);$$

then

$$\sigma_1 > \cdots > \sigma_r > \sigma_{r+1} = \cdots = \sigma_n = 0.$$

4. Define

$$\mathbf{u}_i = \frac{1}{\sigma_i} A \mathbf{v}_i \qquad (i = 1, \dots, r).$$

- 5. Extend $\{\mathbf{u}_1,\ldots,\mathbf{u}_r\}$ to an orthonormal basis $\{\mathbf{u}_1,\ldots,\mathbf{u}_m\}$ of \mathbb{R}^m .
- 6. Write U, V and Σ , as above; then $A = U \Sigma V^T$ is the corresponding singular value decomposition of the matrix A.

EXAMPLE. Find the SVD for the non-symmetric matrix

$$A = \begin{pmatrix} -4 & 6 \\ 3 & 8 \end{pmatrix}.$$

We compute

$$S = A^T A = 25 \begin{pmatrix} 1 & 0 \\ 0 & 4 \end{pmatrix}.$$

The eigenvalues of S are $\lambda_1=100,\ \lambda_2=25,$ with corresponding orthonormal eigenvectors

$$\mathbf{v}_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \ \mathbf{v}_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}.$$

Therefore

$$\sigma_1 = 10, \ \sigma_2 = 5$$

and

$$\mathbf{u}_1 = \frac{1}{\sigma_1} A \mathbf{v}_1 = \frac{1}{5} \begin{pmatrix} 3 \\ 4 \end{pmatrix}, \ \mathbf{u}_2 = \frac{1}{\sigma_2} A \mathbf{v}_2 = \frac{1}{5} \begin{pmatrix} -4 \\ 3 \end{pmatrix}.$$

So

$$V = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \ U = \frac{1}{5} \begin{pmatrix} 3 & -4 \\ 4 & 3 \end{pmatrix}, \ \Sigma = \begin{pmatrix} 10 & 0 \\ 0 & 5 \end{pmatrix}.$$

We check that U, V are orthogonal matrices, and

$$U\Sigma V^T = \frac{1}{5} \begin{pmatrix} 3 & -4 \\ 4 & 3 \end{pmatrix} \begin{pmatrix} 10 & 0 \\ 0 & 5 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} -4 & 6 \\ 3 & 8 \end{pmatrix} = A. \quad \Box$$