SINGULAR VALUE DECOMPOSITION
Notes for Math 54, UC Berkeley

Let A be an m x n matrix. We discuss in these notes how to transform
the perhaps complicated A into a simpler form, by multiplying it on the left
and right by appropriate orthogonal matrices. This is important for many
interesting applications.

LEMMA 1. The matrix
S=ATA

15 a symmetric n X n matric.

Proof. We recall the matrix formula (BC)T = CT BT which implies that

ST = (ATA)T = AT(AT)T = AT4 = &.

The transpose AT is an n x m matrix and thus S is n x n. m
Since S is symmetric, it has real eigenvalues Ay, ..., A, and corresponding
eigenvectors {vy,...,v,} so that
(1) ATAVj = SVj = )\jvj (] = 1, N ,n)
and
{Vv1,...,vyp} is an orthonormal basis of R".

LEMMA 2. (i) The following identities hold:

(2) AVZ"AVj:/\j(SZ“ (i,jzl,...,n),

s v o=
Y100 if i

(ii) Furthermore, the eigenvalues of S = AT A are nonnegative:

where



Proof. We use (1) to calculate that
Av; - Avy = (Avi)T Av; = v AT Av; = \jvivy = \vi - vy = Moy,
since {vy,...,v,} is orthonormal. In particular, \; = [|Av;||* > 0. O
Let us now reorder, if necessary, the eigenvalues so that

)\12"'2/\r>>\r+1:"':)\n20-

DEFINITION. The singular values of A are the numbers

O'j:\/)\j (]:1,,n)
Then
(3) 012"'Zgr>0r+1:"':0n:07

and formula (2) implies

(4) [Avill =05  (F=1,...,n).

DEFINITION. We write

1
ZZ—AZ -:1,..., .
u p v (i T)

It follows from (2) and (4) that {uy,...,u,} is orthonormal in R™, and
thus
0 <r < min{n,m}.

We can now use the Gram-Schmidt process to find further vectors {u,;1, ..., u,}
so that
{uy,...,u,,} is an orthonormal basis of R™.
The key point is that we can use the orthonomal basis {uy,...,u,,}
of R™ and the orthonormal basis {vy,...,v,} of R" to convert our

matrix A into a simpler form. Here is how to do it:



NOTATION. Introduce the m x m orthogonal matrix

U= (ullug\ Ce |um),
whose i™ column is w; (i = 1,...,m). Likewise, introduce the n x n orthog-
onal matrix
V = (V1’V2’ e ’Vn)
Then
(5) vt =v'v=1, vvt =viv =1.
THEOREM 1. We have
01 0 c. 0
0 g9 0
(6) UrAv=1{: : . |0
o 0 ... o,
\ 0 0)

REMARK. Thus if we write ¥ for the m x n matriz on the right hand side
of (6), we obtain using (5) the singular value decomposition (SVD)

(7) A=UsVT

of our matrixz A.

This is similar to the familiar orthogonal diagonalization formula for a
symmetric n X n matriz, but in (6) and (7) the matriz A need not be
symmeltric nor square. O

Proof. Since
AV = A(vi|va| ... [vy) = (Avy|Avy| .. |AV,),

it follows that

u - AVl u - AV2 R b S AVn
®) UTAY — Uy -'Avl us ‘.AVQ ... ug-Av,
u, - -Avy u,,-Ave ... u,-Av,
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Now if j € {r+1,...,n}, then Av; =0. If j € {1,...,r} and i € {r +
1,...,m}, then
ui~Avj:ajul-~uj:O.

Finally, if 4,5 € {1,...,r}, then
A;

1
u; - AAVJ = —AVZ' . AVj = —V;- V]' = 0_157,]
i .

)

Using these formulas in (8) gives (6). O

SUMMARY: HOW TO FIND THE SVD

1. Diagonalize S = AT A, to find an orthonormal basis of R™ of eigenvec-
tors {vy,...,v,}.

2. Reorder the eigenvalues of S so that A\ > --- >\, > 0.

3. Let .

O-] = Af (] = 17 ’n)7

then
01220 >041=-=0,=0

4. Define )

z:_Az .:1,...7 .

u p v (i T)

5. Extend {uy,...,u,} to an orthonormal basis {uy, ..., u,,} of R™.

6. Write U,V and X, as above; then A = UXV7 is the corresponding
singular value decomposition of the matrix A.

EXAMPLE. Find the SVD for the non-symmetric matrix
—4 6
()

AT A 10
soara-ns(l ).

We compute
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The eigenvalues of S are A\; = 100, Ay = 25, with corresponding orthonormal

eigenvectors
(0 (1
Vv = e Vo = 0/

0'1:10, 0'2:5

and 1 1 1 1
3 —4
ul—o_—lAvl—g(4),u2—0—2AV2—5(3).

0 1 1/3 —4 10 0
V‘(1 0>’U_5(4 3)’2_(0 5)'

We check that U,V are orthogonal matrices, and

r 1(3 —4\ (10 0\ /0 1\ [—-4 6\ _
UZV_543 0 5 10_38_A‘D

Therefore



