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Instructions: This is a closed-book test. Each problem is worth 20 points. Read the
questions carefully, and show all your work. All work should be done on the exam paper.
Additional white paper is available if needed. Good luck.
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(1} Prove that +/Z is irrational.

(2) (a) Define the norm of x, |x/, for x € R*.
(b) Show |ay +ag + ... +an| < fag] + |ag| + ... + |aa].
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(8) (a) Define an open cover and a compact set.
(b) Show explicitly that an open interval (a,b) in R is not compact.

(4) Prove that every open set in R is a countable disjoint union of open intervals.
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(5} (a) Let ¥ a,2™ be a power series. Define the radius of convergence,
(b) Compute the radius of convergence for 37 32 ,%n

n=]1 \,.-_'H
oo = o =1.4
(¢) Do 3772 | (—1)"n %" and 3. _((—1)™n ©)? converge. Explain your answer.

(6) Let {an} be a sequence which converges. Show that the limit of {an} (as n goes to
infinity) is unique.
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(7) Define the two different types of discontinuities and give an example of each of
them.

(8) (a) Let f be a vector valued function which maps [a, 4] to B¥. Define the derivative
of £,

{b) Gix.re an example of a vector valued or complex valued function which does not
satisfy the Mean Value Theorem.

(¢) What modification of the Mean Value Theorem is satisfied?
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(9) Let f be a one-to-one real valued function on an interval I. Let g be the inverse
function of f. Assume that f is continuous at z € I and that g has a derivative at
y = f(z) where ¢'(y) # 0. Show that f'(z) exists and that J'(z} = z5. (Prove
directly. Do not state as a consequence of another theorem.)

(10) (a} State Taylor’s Theorem and describe in words what the theorem asserts.
(b) Define a concave function. When is a function concave?

BE/ B8
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(11) Define the Riemann-Stieltjes integral of a function [ with respect to . Define
all the terms you use.

(12) Show that a function f bounded on the closed interval [a, b] is Riemann integrable
on [a, b] if and only if f has at most finitely many points of discontinuity on [a,b.
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(13) State and prove the Fundamental Theorem of Calculnas.



