MATH 104 FINAL

May 17, 2003 70 Evans H. Wu

Your	Name:	
		

1. (30 pts.) Find the radius of convergence and determine the exact interval of convergence of each of the following three series. (a) $\sum_{n} \left(\frac{5^{n}}{n!}\right) x^{n}$

(b)
$$\sum_{n} \left(\frac{2^n}{\sqrt{n}}\right) x^{2n+3}$$

(c)
$$\sum_{n} \left(\frac{2 + (-1)^n}{3} \right) x^n$$

2. (10 pts.)
$$\frac{d}{dx} \int_0^{x^2} e^{\sin u} du$$

3. (20 pts.) Let f be a continuous function defined on [a,b] and let F be the function defined on [a,b] by

$$F(x) = \int_a^x f .$$

Prove that F is differentiable in (a,b) and that $F'(x_0) = f(x_0)$ for every $x_0 \in (a,b)$.

4. (10 pts.) Let $\{s_n\}$ be a sequence such that $\lim_{n\to\infty} s_{2k} = L$ and $\lim_{n\to\infty} s_{2k+1} = L$. Does $\{s_n\}$ converge, and why?

5. (15 pts.) Prove that if |a| < 1, then $\lim_{n \to \infty} a^n = 0$.

6. (15 pts.) Given power series $\sum_n a_n x^n$. If the series converges for at least one nonzero x, prove that there is a number R, $0 \le R \le \infty$, so that the power series converges for all $x \in (-R, R)$ and (in case $R < \infty$) diverges for all x so that |x| > R.

7. (32 pts.) (a) (7 pts.) State the ϵ - δ definition of uniform continuity for a function defined on $S \subset \mathbb{R}$.

(b) (15 pts.) Prove that the function $f:[1,\infty)\to\mathbb{R}$, such that $f(x)=1/x^2$, is uniformly continuous on $[1,\infty)$ by directly verifying the ϵ - δ definition.

(c) (10 pts.) Give another proof of (b).

8. (33 pts.) (a) (8 pts.) State the definition of uniform convergence of a sequence of functions g_n defined on $S \subset \mathbb{R}$ to a function g which is also defined on S.

(b) (15 pts.) Does the sequence $f_n(x) = \frac{nx}{1+10\,nx}$ converge uniformly to $\frac{1}{10}$ on (0,1]? Explain.

(c) (10 pts.) Does the sequence f_n in (b) converge uniformly to $\frac{1}{10}$ on $[\frac{1}{15}, \infty)$? Explain.

(9) (15 pts.) (a) (7 pts.) Define the *continuity* of a function f at a point $x_0 \in \mathbb{R}$.

(b) (8 pts.) Let F be continuous at 1 and let F(1) > 0. Prove that there is an $\epsilon > 0$ so that F(x) > 0 for all $x \in (1 - \epsilon, 1 + \epsilon)$.

(10) (20 pts.) Let f, g be continuous functions defined on [0,2] so that f(0)=-1.5 and g(0)=3. Assume $f'\geq 1$ and $g'\leq -2$ on (0,2). Prove that $f(x_0)=g(x_0)$ for some $x_0\in [0,2]$.