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George M. Bergman Spring 2006, Math 104 16 May, 2006
247 Cory Hall Solutions to the Final Examination ‘ 5:00-8:00PM

. (12 points, 4 points each.) Compute the following. A correct answer will get full ‘credit whether
or not work is shown. An incorrect answer may get partial credit if work is shown that uses a
basically correct mcthod
(a) lim,_, (n! +27 )/(n +2”+‘I) Answer: V. 374 (4"
. . Y L] +{—
(b) The radius of convergence of the power series . X pm] ——— 7"

3
1 -1 for 0 = x4, vy ¥
(©) j'o e’ do(x), where a(x) =1 0 for Vo< x<¥, - Answer: e’ +2e”,

Answer: Ya.

2 for M=x=1,

2. (24 points, 4 points each.) Complete the following definitions. You may use, without defining
them, terms or symbols that Rudin defincs before he defines the word or symbol asked for, Your
definitions do not have to have exactly the same wording as those in Rudin, but for full credit they
should be clear, and mean the same thing as his.
(a) If X is a mewic space, E asubsetof X, and p apoint of X, then p is said to be a 'limit‘
pointof E if .

Answer every nezghborhood af p in X contains a point g+ p such that qE E,

(b) If E is a subset of a mertric space X, then.an oper coveringof £ in X means.,
Answer: aset {G,} of open subsets G, = X suchthatr E< \J G

() If a,a,,...4,,.. is a sequence of complex nuinbers, and s is a complcx numbcr, we write
I8, = lf Answer: lim,_, ., Ek =1 G =5,

(d) If A and Y are metric spaces, and fiXxoay a map, then f is said tc- be umﬁjmly continuous
if ...

Answer: . for every £=0 there exisis a 80 such that far all p, le with
d{p, q) < 8 we have d(f(p).f(q)) < e. \
- (e) If X is a metric space, then a sequence { f )] (m Rudin’s notation, { fu }) of complex- valucd
functlons on X is said to be pointwise bounded if .
‘Answer: for every x€X there exists a real number ¢ such that Jor alt nzl, one
has |f,(x)| < c. (Rudin gives two slightly different wordings on p.155; e:rher of thesa
is, of course, alse acceptable.)

(f) 1f X is a metric space and fe £(X), then [I£]]- denotes . Answer: S“Pxe X |f (x)|.

3. (24 points, 4 points each.) For e:ach of the 1tems listed below, either give an example with the
propeitics stated, or give a brief reason why no such example exists.

If you give an example, you do not have to prove that it has the pmpcrty statad “however, your
examples should be specific; i.e., even if there are many objects of a given sort, you should name a
particular one. If you give a reason why no example exists, don t worry about giving reasons for your
reasons; a simple statement will suffice.

(a) An unbounded subset E of a compact memc space K.

Answer: Does not exist. A compact set iy bounded, and a subset af a bnunded set is
bounded. ‘

(b) A continuous one-to-one and onto function between metric spaces, f: X — K such that the

inverse function f~ L Y- X isnot continuous. ‘
Answer: Let X= [0,2_7:) S R, ler Y= {(.x y)eR? | x% o y =.1}, and lez_f be- -
defined by f(t) = (cost,sint). Orlet X=1[0,1) v {2}, let Y=1[0,1]1, and le_:t F be
defined by f(x) =x for x =<1, f(X)=1. ‘

() Two monotonically inereasing functions - or and B on the interval [0,1], and a rcal valued

function f on that set which belongs to () but not to ().
Answer: ‘Many examples. E.g., you could choose for o any continuous monotonically
increasing function, and for B the function which has value 0 on [0,V5) and 1 on

[V2,1], andlet f=p. Or you could let & be the zero function, B(x) =x, and f be
the function that is 1. on rationals and 0 on irrationals.
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(d} A metric space X, a sequence of continuous real-valued functions ( fy) on X, anda’
continuous real-valued functiom f on X such that [y = F pointwise, but not uniformly. .
Answer: Many examples. E.g., let X = 0.1}, let f, be defined by fnx) =nx if
xe[0.1/2m], f,(x) =1 - nx if xe[1/(2n),1/7], and Su(x) =0 if xefl/n, 1},
and let f be the zero function, '
(e} A metric space X, a sequence of continuous real-valtied functions ( fy) on X, and'a
discontinuous function f on X such that f, — £ uniformly; . ‘

Answer: Does not exist: A uniform limit of continuous funetions is continuous.

(f) Two distinct algebras & = & of continucus real-valued functions -on [0,11 both of which
separate points of [0,1], vanish at no point of [0,1], and are uniformly closed:
Answer: Do not exist. By the Stone-Weierstrass theorem, the first two assumptions on’
A and & imply that each of them has all of €([0,1]) as its Lniform closure; but the
final condition is equivalent to saying that each of them 'is its own uniform ciosire,
‘ hence both of them must equal #([0,1]). ' o
4. (8 points) Suppose F is an ordered, field, arid 'S a subset of '# which has a least tipper bound
o€ F. Let x be an element of F satisfying x> 0. Show that the set xS = {xs| 5§} also has a
‘least upper bound in F, pamely xo. Note: Rudin proves that in any ordered field, the wisual Iaws
relating inequalities and the field operations (addition, subtraction, multiplication and division) hold: so-
you may asswme these properties. o ‘ ‘ :
Answer: Since o is an upper bound for S5, every s€$ satisfies sfa. Since x is
- positive, this implies xs<xo, showing that xo is an upper bound for xS. .
To show that x o is the least upper bound for x8, let us take any P<xo in F
and show that it is not an upper bound for xS. Muliiplying the inequality B<xo by
x . weget X B<ot; hence as a is the least upper bound of S, x~'B is rot an
upper bound of S, so there is some 5€§ satisfying s> x“IB. Multiplying by x
gives xs > B, showing, as required, that B is not an upper bound for x§. ‘
5. (10 points) Suppose (f,) is a scquence of real-valued differentiable functions on R, and that its
‘sequence of derivatives, (f;) is uniformly bounded. Show that the sequence of functions (f,) is
equicontinuous. . o ‘ ‘ : , ‘
(Recall that for any sequence of real-valued functions (g,) - on a metric space X, the statement
that. (g,)) is uniformly bounded means that there exists a real number M suoch that for all x and »,
lg,(x)] < M, while to say that a sequence of real-valued functions (f,) on X is equicontinuous
means that for every £> 0 there exists a 8> 0 such that for all » ‘and all p, geX, we have
d(p,q) < &= d(f,(p).f,(g)) < &) ' - N |
~ Answer: Let M be as in the above definition of uniform boundedness for (f;).
Given £>0, let 8 =e/M. o o ‘ :
- Suppose p,qeR satisfy d(p,q) <8 ie, |p=g| 5. If p=g then for every n
we have f,(p) = f,(q); so d(f,(p).f,,(q) =0 < &. In the contrary case, applying
the Mean Value Theorem to I on the segment (p,q) if p<q, oronthe segment
(q.p) if p>q we conclude that for some x in that segment we have f.(q) £, (p)
= (¢-p)f,(x). Taking absolute values, and substituting in the assumptions |p-y| < &,
|/} < M, and & = &/M, we get | L) = @) < &, ie, d{f,(p)f,(a) <k,
as required. R
6. (8 points) Let < be an algebra of continuous complex-valued functions on a metric space X,
Show-that if 4/ contains the algebra of all continious real-valued. functions on X, then +4 is
precisely the algebra of all continuous complex-valued functions on X. (This is an argument used by
Rudin in proving the complex case of the Stone-Weierstrass theorem; so you will be more or less
repeating what he did there.) : - . .
Each timc you use in your proof one of the conditions defining the statement that ¢ is an
algebra, state that condition. ' R ‘ ‘
Answer: By assumption,  is contaived in the algebra of all continuous complex-
‘valued functions on X, so it suffices to show that if f is such a function, then fedd.
Any continuous complex-valued function f on X can be written f= fi +ih,
where f) and 5 are continuous real-valued functions, hence, by assumption, dre
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‘members of . An algebra of complex-valued functions is closed under multiplication
by complex constants, so since fyeA4 we have ify e . An algebra of complex-
-valued functions is also closed under addition, so as f; and i fz are in A, sois

N +ify =7 as required.

7. (14 points, 2 points each.) Below, a generalization of a theorem in Rudin is stated and proved.
After certain steps of the proof I have inserted parenthetical questions such as “([0 Why?)”" Answer
each of these quesnons at the bottom of the page, after the corresponding number. Your answers can
be results proved in Rudin (you don’t have to specify their statement-pumbers!), observations about
the given situation, or calculations. You should seldom need as much space as is given for the
answers; one key fact or calculation is what is wanted in each case. If you can't Jusufy some step,
you may still agsume it in justifying later steps.

. Note that each question is about the assertion that immediately precedes it = not about earlier
assertions. :

Theorem. Let o bea monotonically increasing real-valued Junition 'cm an interval [a, b), and
tet Hrify ﬁe redl-valued functions on [a, bl which each belong to R(ax). We shall write
f: [a,b] = R for the function defined by F(x) = ( S1() o (X)) Let. K be any compact subset of
R containing f([a, b]) = {f(x) | xe[a, b]), and let @ be any continuous real—valued Sunction
on K.
* Then the function @of:[a,b] — R deﬁned by {fpﬂ l“)(x) = c;p(f(x)) also belongs to F(c).
Proof. We shall show that there exist partitions P ‘of [a, ] making the differences
(i} U(P, a, pof) - L(P, &, p°F) '
arbitrarily small. This is equivalent to the desu‘ed mtegrablluy statement.
Take any £> 0.
The function @ is uniformly continuous on K (m Why? Answer: A-continuous function on a

compact set is uniformly confinwous), hence we may choose §>0 so that for any points - p and g
of K we have

(i) dip.g) < & = l«p(p)—qo(q)l < &
‘Let us now choose, for each JE{] .k}, apartltmn P of [a.b] such that

([2] Which of our assumptions implieq that such pari.iticins exist? Answer: fed(e) (G=1,..., k).)
Let P= (Xgs .., x,) be a common refinement of these partitions Pioes }gk. :

Onr plan Wll] ba to divide the set of n intervals [x;_ 15 % ] (i=1,..., n) into two subsets, such
that on each interval in the first subset, the difference between ‘sup (qpo f ) and inf (@eof) is small,
while in the other subset, the sum of the lengths A.c; is.small, and show that these properties
together make (i) small. To do this; let A be the set of all ic{l,....n} such that :

vy SPrelx; 1.x;) fitx)y - mfxe["ir-l’xi] i) =< Sx’—Jk for j=1,..,k

and let B consist of the remaining elements of {1,...,n}, that is, those i such that the inequality
of (iv} fails for at least one j. ‘

Note that if ieA and.if x, y are points of [x;_;,%;], then (iv) implies that for j=1...,k we
have | f (x)— f (»}| < 8/Jk, Hence d(f(x),f(»)) < &, by the formu]a for distance in R (l 3] What
is that fonnula‘? Answer: d(p.q) = ((py—q) + .. + (pp— ‘?k) ) .) So by (i), for such x and y
we have [(@° £)(x) - (@e £)(y)] < £; hence

SquE [x 1'1;] (q)of)(x) IE[JC RP xi] ((P f)(x) = E.
Multiplying each of these inequalities by A o, and summing them over i€A, we conclude that the
contribution to (1) of the intervals [x; ;=12 %;] with igA is

(v) E (Zjegq Aop)e £ (alb)—cala))e. ¢ Explaﬁn the second “'=*" Answer: The sum
is of a subset of the m:ami;na'r.s.~ Aa,, hem:e itis £ the sum of all Aoy, whichis olb)-afa))



18/2n/2886 14:38 5186422416 LUCE M&It LIBRA&RY PAGE  B4/84

We next consider the intervals in our partition P indexed by elements ie B. The fact that these

have small total length will be a consequence of the conditions }3 e #(x), which we embodied in
condition (iii). Let us combine these conditions into one inequality by summing the inequaliry (iii)

over j, getting:
(vi) Ty (B(Py auf) ~ LP, o ) <. ke, -
([5) Where did the % on the right hand side come from? Answer: We have added up k inegualities,
S0 right-hand sidé is sum of k' terms 8e.) Now if we expand the left-hand side of (vi) by using the
definition of U(Pj, o, Jf’) and of L(Pf,‘ @, f;) as sums of terms, one for each interval [x;_1, x;1, then
for each ie{l,...in}, ‘the terms corres'pond’ing to the interval ‘[x;_;, ;] add up to
(vii) Ej=1 (SquEf.x,'_pI;] fitxy - mfxg[x‘__l.’ %] LGN Aa;. .
Now for those i belonging to dur'set B, (vil) is = (8/4k) Aoty " ([6] Why? Answer: Because ic B
means that the inequality of (iv) fails for at least one j.) Hence summing over -{, we see that the
contribution of intervals with i€ B to the left-hand side of (vi} is = (5/4k) Xepdo;, and
substituting this into (vi) we get . : : : _
B/ & pAo; < k&'g. ‘ - -

Dividing both sides by 8/Jk we get our desired tesult that the Act; with ie B have small stin:
(vill) . E;opdey < k3%e. | |

- Now the contribution to (i) of the intervals indexed by terms ieB is at most

Ziep(SUPpe g @)~ inf, . g 9PN A0
{[7] What general result implies that the above sup and inf are finite? Answer: A continuous
ﬁmctfon on a compact set is bounded.), and by (viii) the above sum is |
- ix) S (up,e g @(p) - infu x 0(p)) k3”zs.

3o (v) and (ix) give bounds on the contributions to (i) of the intervals [x;_1, %} with i in A
and B respectively. Adding these, we conclude that (i) is at most ‘ g

| (P ¢ o @(P) — inf, ¢ g (PN + alb) - aa))e:
By taking & sufficiently small, this can be made arbitrarily small, as required.

(Remark: The theorem in Rudin generalized above is Thearem 6.11, p.127, which is the k=1
case of the above resull.)

. 1 HOPE YOU DID WELL!
Good Tuek on yawur redining exams

i
HAVE A GOOD SUMMER !



