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Abstract. We revisit Vasy’s method [Va1],[Va2] for showing meromorphy of the

resolvent for (even) asymptotically hyperbolic manifolds. It provides an effective

definition of resonances in that setting by identifying them with poles of inverses

of a family of Fredholm differential operators. In the Euclidean case the method

of complex scaling made this available since the 70’s but in the hyperbolic case

an effective definition was not known till [Va1],[Va2]. Here we present a simplified

version which relies only on standard pseudodifferential techniques and estimates for

hyperbolic operators. As a byproduct we obtain more natural invertibility properties

of the Fredholm family.

1. Introduction

We present a version of the method introduced by András Vasy [Va1],[Va2] to prove

meromorphic continuations of resolvents of Laplacians on even asymptotically hyper-

bolic spaces – see (1.2). That meromorphy was first established for any asymptotically

hyperbolic metric by Mazzeo–Melrose [MazMe]. Other early contributions were made

by Agmon [Ag], Fay [Fa], Guillopé–Zworski [GuZw], Lax–Phillips [LaPh], Mandouvalos

[Man], Patterson [Pa] and Perry [Pe]. Guillarmou [Gu] showed that the evenness con-

dition was needed for a global meromorphic continuation and clarified the construction

given in [MazMe].

Vasy’s method is dramatically different from earlier approaches and is related to

the study of stationary wave equations for Kerr–de Sitter black holes – see [Va1] and

[DyZw2, §5.7]. Its advantage lies in relating the resolvent to the inverse of a family

of Fredholm differential operators. Hence, microlocal methods can be used to prove

results which have not been available before, for instance existence of resonance free

strips for non-trapping metrics [Va2]. Another application is the work of Datchev–

Dyatlov [DaDy] on the fractal upper bounds on the number of resonances for (even)

asymptotically hyperbolic manifolds and in particular for convex co-compact quotients

of Hn. Previously only the case of convex co-compact Schottky quotients was known

[GuLiZw] and that was established using transfer operators and zeta function methods.

In the context of black holes the construction has been used to obtain a quantitative
1
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version of Hawking radiation [Dr], exponential decay of waves in the Kerr–de Sitter

case [Dy1], the description of quasi-normal modes for perturbations of Kerr–de Sitter

black holes [Dy2] and rigorous definition of quasi-normal modes for Kerr–Anti de Sitter

black holes [Ga]. The construction of the Fredholm family also plays a role in the

study of linear and non-linear scattering problems – see [BaVaWu], [HiVa1], [HiVa2]

and references given there.

A related approach to meromorphic continuation, motivated by the study of Anti-

de Sitter black holes, was independently developed by Warnick [Wa]. It is based on

physical space techniques for hyperbolic equations and it also provides meromorphic

continuation of resolvents for even asymptotically hyperbolic metrics [Wa, §7.5].

We should point out that for a large class of asymptotically Euclidean manifolds

an effective characterization of resonances has been known since the introduction of

the method of complex scaling by Aguilar–Combes, Balslev–Combes and Simon in the

1970s – see [DyZw2, §4.5] for an elementary introduction and references and [WuZw]

for a class asymptotically Euclidean manifolds to which the method applies.

In this note we present a direct proof of meromorphic continuation based on stan-

dard pseudodifferential techniques and estimates for hyperbolic equations which can

found, for instance, in [H3, §18.1] and [H3, §23.2] respectively. In particular, we prove

Melrose’s radial estimates [Me] which are crucial for establishing the Fredholm prop-

erty. A semiclassical version of the approach presented here can be found in [DyZw2,

Chapter 5] – it is needed for the high energy results [DaDy], [Va2] mentioned above.

We now define even asymptotically hyperbolic manifolds. Suppose that M is a

compact manifold with boundary ∂M 6= ∅ of dimension n + 1. We denote by M the

interior of M . The Riemannian manifold (M, g) is even asymptotically hyperbolic if

there exist functions y′ ∈ C̄∞(M ; ∂M) and y1 ∈ C̄∞(M ; (0, 2))†, y1|∂M = 0, dy1|∂M 6= 0,

such that

M ⊃ y−1
1 ([0, 1]) 3 m 7→ (y1(m), y′(m)) ∈ [0, 1]× ∂M (1.1)

is a diffeomorphism, and near ∂M the metric has the form,

g|y1≤1 =
dy2

1 + h(y2
1)

y2
1

, (1.2)

where [0, 1] 3 t 7→ h(t), is a smooth family of Riemannian metrics on ∂M . For the

discussion of invariance of this definition and of its geometric meaning we refer to [Gu,

§2].

Let −∆g ≥ 0 be the Laplace–Beltrami operator for the metric g. Since the spectrum

is contained in [0,∞) the operator −∆g − ζ(n − ζ) is invertible on H2(M,d volg) for

†We cannot write a paper about Vasy’s method without some footnotes: we follow the notation

of [H3, Appendix B] where C̄∞(M) denotes functions which are smoothly extendable across ∂M and

Ċ∞(M) functions which are extendable to smooth functions supported in M – see §3.
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Re ζ > n. Hence we can define

R(ζ) := (−∆g − ζ(n− ζ))−1 : L2(M,dvolg)→ H2(M,dvolg), Re ζ > n. (1.3)

We note that elliptic regularity shows that R(ζ) : Ċ∞(M) → C∞(M), Re ζ > n. We

also remark that as a byproduct of the construction we will show the well known fact

that R(λ) : L2 → H2 is meromorphic for Re ζ > n/2: the poles correspond to L2

eigenvalues of −∆g and hence lie in (n/2, n).

We will prove the result of Mazzeo–Melrose [MazMe] and Guillarmou [Gu]:

Theorem 1. Suppose that (M, g) is an even asymptotically hyperbolic manifold and

that R(ζ) is defined by (1.3). Then

R(ζ) : Ċ∞(M)→ C∞(M),

continues meromorphically from Re ζ > n to C with poles of finite rank.

The key point however is the fact that R(ζ) can be related to P (i(ζ−n/2))−1 where

ζ 7−→ P (i(ζ − n/2))

is a family of Fredholm differential operators – see §2 and Theorem 2. That family will

be shown to be invertible for Re ζ > n which proves the meromorphy of P (i(ζ−n/2))−1

– see Theorem 3. We remark that for Re ζ > n
2
, R(ζ) is meromorphic as an operator

L2(M)→ L2(M) with poles corresponding to eigenvalues of −∆g.

The paper is organized as follows. In §2 we define the family P (λ) and the spaces

on which it has the Fredholm property. That section contains the main results of

the paper: Theorems 2 and 3. In §3 we recall the notation from the theory of pseu-

dodifferential operators and provide detailed references. We also recall estimates for

hyperbolic operators needed here. In §4 we prove Melrose’s propagation estimates at

radial points and in §5 we use them to show the Fredholm property. §6 gives some

precise estimates valid for Imλ � 1. Finally §7 we present invertibility of P (λ) for

Imλ � 1 and that proves the meromorphic continuation. Except for references to

[H3, 18.1] and [H3, 23.2] and some references to standard approximation arguments

[DyZw2, Appendix E] (with material readily available in many other places) the paper

is self-contained.
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by the National Science Foundation under the grant DMS-1500852 is also gratefully
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2. The Fredholm family of differential operators

Let y′ ∈ ∂M denote the variable on ∂M . Then (1.2) implies that near ∂M , the

Laplacian has the form

−∆g = (y1Dy1)
2 + i(n+ y2

1γ(y2
1, y
′))y1Dy1 − y2

1∆h(y21),

γ(t, y′) := −∂th̄(t)/h̄(t), h̄(t) := deth(t), D := 1
i
∂.

(2.1)

Here ∆h(y21) is the Laplacian for the family of metrics on ∂M depending smoothly on

y2
1 and γ ∈ C∞([0, 1]× ∂M). (The logarithmic derivative defining γ is independent of

of the density on ∂M needed to define the determinant h̄.)

In §6 we will show that the unique L2 solutions to

(−∆g − ζ(n− ζ))u = f ∈ Ċ∞(M), Re ζ > n, ,

satisfy

u = yζ1 C̄∞(M) and y−ζ1 u|y1<1 = F (y2
1, y
′), F ∈ C̄∞([0, 1]× ∂M).

Eventually we will show that the meromorphic continuation of the resolvent provides

solutions of this form for all ζ ∈ C that are not poles of the resolvent.

This suggests two things:

• To reduce the investigation to the study of smooth solutions we should conju-

gate −∆g − ζ(n− ζ) by the weight yζ1.

• The desired smoothness properties should be stronger in the sense that the

functions should be smooth in (y2
1, y
′).

Motivated by this we calculate,

y−ζ1 (−∆g − ζ(n− ζ))yζ1 = x1P (λ), x1 = y2
1, x′ = y′, λ = i(ζ − n

2
), (2.2)

where, near ∂M ,

P (λ) = 4(x1D
2
x1
− (λ+ i)Dx1)−∆h + iγ(x)

(
2x1Dx1 − λ− in−1

2

)
. (2.3)

The switch to λ is motivated by the fact that numerology is slightly lighter on the

ζ-side for −∆g and on the λ-side for P (λ).

To define the operator P (λ) geometrically we introduce a new manifold using coor-

dinates (1.1) and x1 = y2
1 for y1 > 0:

X = [−1, 1]x1 × ∂M t
(
M \ y−1((0, 1))

)
. (2.4)

We note that X1 := X ∩{x1 > 0} is diffeomorphic to M but X1 and M have different

C∞-structures‡.

‡This construction appeared already in [GuZw, §2] and P (λ) = Q(n/4 − iλ/2) where Q(ζ) was

defined in [GuZw, (2.6),(3.12)]. However the significance of Q(ζ) did not become clear until [Va1].
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We can extend x1 → h(x1) to a family of smooth non-degenerate metrics on ∂M

on [−1, 1]. Using (2.1) that provides a natural extension of the function γ appearing

(2.2).

The Laplacian −∆g is a self-adjoint operator on L2(M,d volg), where near ∂M and

in the notation of (2.1),

d volg = y−n−1
1 h̄(y2

1, y
′)dy1dy

′,

where dy′ in a density on ∂M used to define the determinant h̄ = deth. The conju-

gation (2.2) shows that for λ ∈ R (ζ ∈ n
2

+ iR) x1P (λ) is formally self-adjoint with

respect to x−1
1 h̄(x)dx1dx

′ and consequently P (λ) is formally self-adjoint for

dµg = h̄(x)dx. (2.5)

This will be the measure used for defining L2(X) in what follows. In particular we see

that the formal adjoint with respect to dµg satisfies

P (λ)∗ = P (λ̄). (2.6)

We can now define spaces on which P (λ) is a Fredholm operator. For that we denote

by H̄s(X◦) the space of restrictions of elements of Hs on an extension of X across the

boundary to the interior of X – see [H3, §B.2] and §3.2 – and put

Ys := H̄s(X◦), Xs := {u ∈ Ys+1 : P (0)u ∈ Ys}. (2.7)

Since the dependence on λ in P (λ) occurs only in lower order terms we can replace

P (0) by P (λ) in the definition of X .

Motivation: Since for x1 < 0 the operator P (λ) is hyperbolic with respect to the

surfaces x1 = a < 0 the following elementary example motivates the definition (2.7).

Consider P = D2
x1
−D2

x2
on [−1, 0]× S1 and define

Ys := {u ∈ H̄s([−1,∞)× S1) : suppu ⊂ [−1, 0]× S1}, Xs := {u ∈ Ys+1 : Pu ∈ Ys}.

Then standard hyperbolic estimates – see for instance [H3, Theorem 23.2.4] – show

that for any s ∈ R, the operator P : Xs → Ys is invertible. Roughly, the support

condition gives 0 initial values at x1 = 0 and hence Pu = f can be uniquely solved for

x1 < 0.

We can now state the main theorems of this note:

Theorem 2. Let Xs,Ys be defined in (2.7). Then for Imλ > −s− 1
2

the operator

P (λ) : Xs → Ys,

has the Fredholm property, that is

dim{u ∈Xs : P (λ)u = 0} <∞, dim Ys/P (λ)Xs <∞,

and P (λ)Xs is closed.
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The next theorem provides invertibility of P (λ) for Imλ > 0 and that shows the

meromorphy of P (λ)−1 – see [DyZw2, Theorem C.4]. We will use that in Proposition

8 to show the well known fact that in addition to Theorem 1 R(n
2
− iλ) is meromorphic

on L2(M,dvolg) for Imλ > 0.

Theorem 3. For Imλ > 0, λ2 + (n
2
)2 /∈ Spec(−∆g) and s > − Imλ− 1

2
,

P (λ) : Xs → Ys

is invertible. Hence, for s ∈ R and Imλ > −s − 1
2
, λ 7→ P (λ)−1 : Ys → Xs, is a

meromorphic family of operators with poles of finite rank.

For interesting applications it is crucial to consider the semiclassical case, that is,

uniform analysis as Reλ → ∞ – see [DyZw2, Chapter 5] – but to indicate the ba-

sic mechanism behind the meromorphic continuation we only present the Fredholm

property and invertibility in the upper half-plane.

3. Preliminaries

Here we review the notation and basic facts need in the proofs of Theorems 2 and

3.

3.1. Pseudodifferential operators. We use the notation of [H3, §18.1] and for X,

an open C∞-manifold we denote by Ψm(X) the space of properly supported pseudo-

differential operators of order m. (The operator A : C∞c (X) → D′(X) is properly

supported if the projections from support of the Schwartz kernel of A in X × X to

each factor are proper maps, that is inverse images of compact sets are compact. The

support of the Schwartz kernel of any differential operator is contained in the diagonal

in X ×X and clearly has that property.)

For A ∈ Ψm(X) we denote by σ(A) ∈ Sm(T ∗X \ 0)/Sm−1(T ∗X \ 0) the symbol of

A, sometimes writing σ(A) = a ∈ Sm(T ∗X \ 0) with an understanding that a is a

representative from the equivalence class in the quotient.

We will use the following basic properties of the symbol map: if A ∈ Ψm(X) and

B ∈ Ψk(X) then

σ(AB) = σ(A)σ(B) ∈ Sm+k/Sm+k−1,

σ(i[A,B]) = Hσ(A)σ(B) ∈ Sm+k−1/Sm+k−2,

where for a ∈ Sm, Ha is the Hamiton vector field of a.

For any operator P ∈ Ψm(X) we can define WF(P ) ⊂ T ∗X \ 0 (the smallest subset

outside of which A has order −∞ – see [H3, (18.1.34)]). We also define Char(P ) the

smallest conic closed set outside of which P is elliptic – see [H3, Definition 18.1.25].

A typical application of the symbolic calculus and of this notation is the following
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statement [H3, Theorem 18.1.24′]: if P ∈ Ψm(X) and V is an open conic set such that

V ∩ Char(P ) = ∅ then there exists Q ∈ Ψ−m(X) such that

WF(I − PQ) ∩ V = WF(I −QP ) ∩ V = ∅. (3.1)

This means that Q is a microlocal inverse of P in V .

We also recall that the operators in A ∈ Ψm(X) have mapping properties

A : Hs
loc(X)→ Hs−m

loc (X), A : Hs
comp(X)→ Hs−m

comp(X), s ∈ R.

Combined with (3.1) we obtain the following elliptic estimate: if A,B ∈ Ψ0(X) have

compactly supported Schwartz kernels, P ∈ Ψm(X) and

WF(A) ∩ (Char(B) ∪ Char(P )) = ∅,

then for any N there exists C such that

‖Au‖Hs+m ≤ C‖BPu‖Hs + C‖u‖H−N . (3.2)

3.2. Hyperbolic estimates. If X is a smooth compact manifold with boundary we

follow [H3, §B.2] and define Sobolev spaces of extendible distributions, H̄s(X◦) and

of supported distributions Ḣs(X). Here X = X◦ t ∂X and X◦ is the interior of X.

These are modeled on the case of X = Rn

+, Rn
+ := {x ∈ Rn : x1 > 0} in which case

H̄s(Rn
+) = {u : ∃U ∈ Hs(Rn), u = U |x1>0},

Ḣs(Rn

+) := {u ∈ Hs(Rn) : suppu ⊂ Rn

+}.

The key fact is that the L2 pairing (defined using a smooth density on X)

Ċ∞(X)× C̄∞(X◦) 3 (u, v) 7→
∫
X

u(x)v̄(x)dx,

extends by density to (u, v) ∈ Ḣ−s(X)× H̄(X◦) and provides the identification of dual

spaces,

(H̄s(X◦))∗ ' Ḣ−s(X), s ∈ R. (3.3)

Suppose that P = D2
t + P1(t, x,Dx)Dt + P0(t, x,Dx), x ∈ N , where N is a compact

manifold and Pj ∈ C∞(Rt; Ψ2−j(N)), is strictly hyperbolic with respect to the level

surfaces t = const – see [H3, §23.2]. For any T > 0 and s ∈ R, we define

H̃s([0, T )×N) =
{
u : u = U |[0,T )×N , U ∈ Hs(R×N), suppU ⊂ [0,∞)×N

}
,

with the norm defined as infimum of Hs norms over all U ∈ Hs with u[0,T ) = U . (These

spaces combines the Ḣs space at the t = 0 with H̄s at t = T .)

Then

∀ f ∈ H̃s([0, T )×N) ∃ !u ∈ H̃s+1([0, T )×N), Pu = f, (3.4)

and

‖u‖H̃s+1([0,T )×N) ≤ C‖f‖H̃s([0,T )×N), (3.5)
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see [H3, Theorem 23.2.4].

If we define

Ys := H̃s([0, T )×N), Xs := {u ∈ Ys+1 : Pu ∈ Ys}

then P : Xs → Ys is invertible. In our application we will need the following estimate

which follows from the invertibility of P : if u ∈ H̄s((0, T )×N) then for any δ > 0,

‖u‖H̄s+1((0,T )×N) ≤ C‖Pu‖H̄s((0,T )×N) + C‖u‖H̄s+1((0,δ))×N). (3.6)

The operator P (λ) defined in (2.3) is of the form x1(D2
x1
− P1(x)Dx1 + P0(x,Dx′))

where P1 ∈ C∞ and P0 is elliptic with a negative principal symbol for −1 ≤ x1 < −ε <
0, for any fixed ε. That means that for t = 1 + x1 and T = 1 − ε or t = −ε − x1,

T = 1 − ε, the operator is (up to the non-zero smooth factor x1) is of the form to

which estimates (3.5) and (3.6) apply.

We will also need an estimate valid all the way to x1 = 0:

Lemma 1. Suppose that u ∈ Ċ∞(X ∩ {x1 ≤ 0}) and P (λ)u = 0. Then u ≡ 0.

As pointed out by András Vasy this follows from general properties of the de Sitter

wave equation [Va3, Proposition 5.3] but we provide a simple direct proof.

Proof. We note that if u|x1≥−ε = 0 for some ε > 0 then u ≡ 0 by (3.5). That follows

from energy estimates. We want to make that argument quantitative. We will work

in [−1,−ε] × ∂M and define d : C∞(∂M) → C∞(∂M ;T ∗∂M) to be the differential.

We denote by d∗ its Hodge adjoint with with respect to the (x1-dependent) metrics h,

d∗h : C∞(∂M ;T ∗∂M)→ C∞(∂M). Then

P (λ) = 4x1D
2
x1

+ d∗hd− 4(λ+ i)Dx1 − iγ(x)(2x1Dx1 − λ− in−1
2

).

Since for f ∈ C∞(∂M) and any fixed x1, h = h(x1),∫
∂M

d∗h(vdu)f̄ dvolh =

∫
∂M

〈vdu, df〉h dvolh =

∫
∂M

(
〈du, d(v̄f)〉h − 〈du, dv̄〉hf̄

)
dvolh

=

∫
∂M

(vd∗hdu− 〈du, dv̄〉) f̄ dvolh,

we conclude that d∗h(vdu) = vd∗hdu−〈du, dv̄〉h. From this we derive the following form

of the energy identity valid for x1 < 0:

∂x1
(
|x1|−N(−x1|∂x1u|2 + |du|2h + |u|2)

)
+ |x1|−Nd∗h (Re(ūx1du)) =

2 Re |x1|−N ūx1P (λ)u+N |x1|−N−1
(
−x1|ux1|2 + |du|2h + |u|2

)
+ |x1|−NR(λ, u),

where R(λ, u) is a quadratic form in u and du, independent of N . We now fix δ > 0

and apply Stokes’s theorem in [−δ,−ε] ×M . For N large enough (depending on λ)
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that gives∫
∂M

(|ux1|2 + |du|2h)|x1=−δ d volh ≤ Cε−N
∫
∂M

(|ux1|2 + |du|2h)|x1=−ε d volh

≤ CKε
−N+K ,

for any K, as ε → 0+ (since u vanishes to infinite order at x1 = 0). By choosing

K > N we see that the left hand side is 0 and that implies that u is zero. �

4. Propagation of singularities at radial points

To obtain meromorphic continuation of the resolvent (1.3) we need propagation

estimates at radial points. These estimates were developed by Melrose [Me] in the

context of scattering theory on asymptotically Euclidean spaces and are crucial in the

Vasy approach [Va1]. A semiclassical version valid for very general sinks and sources

was given in Dyatlov–Zworski [DyZw1] (see also [DyZw2, Appendix E]).

To explain this estimates we first review the now standard results on propagation

of singularities due to Hörmander [H]. Thus let P ∈ Ψm(X), with a real valued

symbol p := σ(P ). Suppose that in an open conic subset of U ⊂ T ∗X \ 0, π(U) b X

(π : T ∗X → X),

p(x, ξ) = 0, (x, ξ) ∈ U =⇒ Hp and ξ∂ξ are linearly independent at (x, ξ). (4.1)

Here Hp is the Hamilton vector field of p and ξ∂ξ is the radial vector field. The latter

is invariantly defined as the generator of the R+ action on T ∗X \ 0 (multiplication of

one forms by positive scalars).

The basic propagation estimate is given as follows: suppose that A,B,B1 ∈ Ψ0(X)

and WF(A) ∪WF(B) ⊂ U , WF(I −B1) ∩ U = ∅.
We also assume that that WF(A) is forward controlled by {Char(B) in the following

sense: for any (x, ξ) ∈WF(A) there exists T > 0 such that

exp(−THp)(x, ξ) /∈ Char(B), exp([−T, 0]Hp)(x, ξ) ⊂ U. (4.2)

The forward control can be replaced by backward control, that is we can demand

existence of T < 0. That is allowed since the symbol is real.

The crucial estimate is then given by

‖Au‖Hs+m−1 ≤ C‖B1Pu‖Hs + C‖Bu‖Hs+m−1 + C‖u‖H−N , (4.3)

where N is arbitrary and C is a constant depending on N . A direct proof can be found

in [H]. The estimate is valid with u ∈ D′(X) for which the right hand side is finite –

see [DyZw2, Exercise E.28].

We will consider a situation in which the condition (4.1) is violated. We will work

on the manifold X given by (2.4), near x1 = 0. In the notation of (4.1) we assume
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∂T
∗
X

A

B1

∂Γ+ ∂T
∗
X

A

B1

∂Γ−

B

Figure 1. An illustration of the behaviour of the Hamilton flows for

radial sources and for radial sinks and of the localization of operators

in the estimates (4.10) and (4.13) respectively. The horizontal line on

the top denotes the boundary, ∂T
∗
X, of the fiber–compactified cotangent

bundle T
∗
X. The shaded half-discs then correspond to conic neighbour-

hoods in T ∗X. In the simplest example of X = (−1, 1) × R/Z, and

p = x1ξ
2
1 + ξ2

2 , Hp = ξ1(2x1∂x1 − ξ1∂ξ1) + 2ξ2∂x2 , x2 ∈ R/Z. Near

∂Γ± explicit (projective) compactifications is given by r = 1/|ξ1|, (so

that ∂T
∗
X = {r = 0}), θ = ξ2/|ξ1|, with x (the base variable) un-

changed. In this variables, near ∂Γ± (boundaries of compactifications

of Γ± we check that r∂r = −ξ1∂ξ1 − ξ2∂ξ2 and θ∂θ = ξ′∂ξ′ . Hence near

Γ±, Hp = ±r(θ∂θ + r∂r + 2x1∂x1 + 2θ∂x2) and (after rescaling) we see a

source and a sink.

that, near x1 = 0,

P ∈ Diff2(X), p = σ(P ) = x1ξ
2
1 + q(x, ξ′), q(x1, x

′, ξ′) := |ξ′|2h(x1,x′), (4.4)

(x′, ξ′) ∈ T ∗∂M , (x, ξ) ∈ T ∗X \ 0. The Hamilton vector field is given by

Hp = ξ1(2x1∂x1 − ξ1∂ξ1) + ∂x1q(x, ξ
′)∂ξ1 +Hq(x1), (4.5)

where Hq(x1) is the Hamilton vectorfield of (x′, ξ′) 7→ q(x1, x
′, ξ′) on T ∗∂M .

We see that the condition (4.1) is violated at

Γ = {(0, x′, ξ1, 0) : x′ ∈ ∂M, ξ1 ∈ R \ 0} ⊂ T ∗X \ 0,

Γ = N∗Y \ 0, Y := {x1 = 0}.
(4.6)

In fact, Hp|N∗Y = −ξ1(ξ∂ξ|N∗Y ). Nevertheless Propositions 2 and 3 below provide

propagation estimates valid in spaces with restricted regularity.

We note that Γ = p−1(0) ∩ π−1(Y ) and that near π−1(Y ), Σ =: p−1(0) has two

disjoint connected components:

Σ = Σ+ t Σ−, Γ± := Σ± ∩ Γ,

Σ± ∩ {|x1| < 1} := {(−q(x, ξ′)/ρ2, x′, ρ, ξ′) : ±ρ > 0, |x1| < 1}.
(4.7)

The set Γ+ is a source and Γ− is a sink for the flow projected to the sphere at infinity

– see Fig. 1.
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We now write P as follows:

P = P0 + iQ, P0 = P ∗0 , Q = Q∗, (4.8)

where the formal L2-adjoints are taken with respect to the density dx1d volh.

We can now formulate the following propagation result at the source. We should

stress that changing P to −P changes a source into a sink and the relevant thing is

the sign of σ(Q) ∈ S1/S0 which then changes – see (4.9) below.

We first state a radial source estimate:

Proposition 2. In the notation of (4.7) and (4.8) put

s+ = sup
Γ+

|ξ1|−1σ(Q)− 1
2
, (4.9)

and take s > s+. For any B1 ∈ Ψ0(X) satisfying WF(I − B1) ∩ Γ+ = ∅ there exists

A ∈ Ψ0(X) with Char(A) ∩ Γ+ = ∅ such that for u ∈ C∞c (X)

‖Au‖Hs+1 ≤ C‖B1Pu‖Hs + C‖u‖H−N , (4.10)

for any N .

Remarks. 1. The supremum in (4.9) should be understood as being taken at the

ξ-infinity or as s+ = supx′∈∂M limξ1→∞ |ξ1|−1σ(Q)(0, x′, ξ1, 0)− 1
2
.

2. An approximation argument – see [DyZw2, Lemma E.42] for a textbook presentation

and also [HaVa],[Va1],[Me] – shows that (4.10) is valid for u ∈ H−N , suppu∩ ∂X = ∅,
such that B1u ∈ Hs+1, B1Pu ∈ Hs.

3. Using a regularization argument – see for instance [H, §3.5] or [DyZw2, Exercises

E.28, E.33] – (4.10) holds for all u ∈ D′(X), suppu ⊂ K where K is a fixed compact

subset of X◦, such that B1u ∈ Hr for some r > s+ + 1. In particular, when combined

with the hyperbolic estimate (3.6), that gives

Pu ∈ C̄∞(X), u ∈ H̄r(X), r > s+ + 1 =⇒ u ∈ C̄∞(X). (4.11)

In fact, the smoothness near x1 = 0 is obtained from the estimate (4.10) and elliptic es-

timates applied to χu, χ ∈ C∞c (X) and then the hyperbolic estimates show smoothness

for x1 < −ε.
4. To see that the threshold (4.9) is essentially optimal for (4.11) we consider X =

(−1, 1) × R/Z and P = x1D
2
x1
− i(ρ + 1)Dx1 − D2

x2
, x2 ∈ R/Z, ρ ∈ R. In this case

s+ = −ρ− 1
2
. Put u(x) := χ(x1)(x1)−ρ+ , ρ /∈ −N, and and note that

(x1D
2
x1
− i(ρ+ 1)Dx1)(x1)−ρ+ = 0.

Hence Pu ∈ C∞c (X) and u ∈ H−ρ+ 1
2
− \H−ρ+ 1

2 .

The radial sink estimate requires a control condition similar to that in (4.2). There

is also a change in the regularity condition.
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Proposition 3. In the notation of (4.7) and (4.8) put

s− = sup
Γ−

|ξ1|−1σ(Q)− 1
2
, (4.12)

and take s > s−. For any B1 ∈ Ψ0(X) satisfying WF(I − B1) ∩ Γ− = ∅ there exist

A,B ∈ Ψ0(X) such that

Char(A) ∩ Γ− = ∅, WF(B) ∩ Γ− = ∅

and for u ∈ C∞c (X),

‖Au‖H−s ≤ C‖B1Pu‖H−s−1 + C‖Bu‖H−s + C‖u‖H−N , (4.13)

for any N .

Remark. A regularization method – see [DyZw2, Exercise 34] – shows that (4.13) is

valid for u ∈ D′(X◦), suppu ⊂ K where K b X◦ is a fixed set, and for which the right

hand side of (4.13) is finite.

Proof of Proposition 2. The basic idea is to produce an operator Fs ∈ Ψs+ 1
2 (X), elliptic

on WF(A) such that for s > s+ and u ∈ C∞c (X), we have

‖Fsu‖2

H
1
2
≤ C‖B1Pu‖Hs‖Fsu‖H 1

2
+ C‖B1u‖2

Hs+1
2

+ C‖u‖2
H−N . (4.14)

This is achieved by writing, in the notation of (4.8),

Im〈Pu, F ∗s Fsu〉 = 〈 i
2
[P0, F

∗
s Fs]u, u〉+ Re〈Qu, F ∗s Fsu〉, (4.15)

and using the first term on the right hand side to control the left hand side of (4.14).

We note here that since WF(Fs) ∩WF(I − B1) = ∅, then in any expression involving

Fs we can replace u and Pu by B1u and B1Pu respectively by introducing errors

O(‖u‖H−N ) for any N . Hence from now on we will consider estimates with u only.

To construct a suitable Fs we take ψ1 ∈ C∞c ((−2δ, 2δ); [0, 1]), ψ1(t) = 1, for |t| < δ,

tψ′1(t) ≤ 0, and ψ2 ∈ C∞(R), ψ2(t) = 0 for t ≤ 1, ψ2(t) = 1, t ≥ 2, and propose

Fs := ψ1(x1)ψ1(−∆h/D
2
x1

)ψ2(Dx1)D
s+ 1

2
x1 ∈ Ψs+ 1

2 (X),

σ(Fs) =: fs(x, ξ) = ψ1(x1)ψ1(q(x, ξ′)/ξ2
1)ψ2(ξ1)ξ

s+ 1
2

1 .

We note that because of the cut-off ψ2, D
s+ 1

2
x1 and −∆h/D

2
x1

are well defined.

For |ξ| large enough (which implies that ξ1 > |ξ|/C on the support of fs if δ is small

enough) we use (4.5) to obtain

Hpfs(x, ξ) = ξ
s+ 3

2
1

(
2x1ψ

′
1(x1)ψ1(ξ2/ξ1) + 2ψ1(x1)(q(x, ξ′)/ξ2

1)ψ′1(q(x, ξ′)/ξ2
1)

−(s+ 1
2
)ψ1(x1)ψ1(q(x, ξ′)/ξ2

1)
)
ψ2(ξ1) ≤ −(s+ 1

2
)ξ1fs.

(4.16)

In particular,

fsHpfs + (s+ 1
2
)ξ1f

2
s ≤ 0, |ξ| > C0. (4.17)
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The inequality (4.17) is important since σ( i
2
[P0, F

∗
s Fs]) = fsHpfs. Hence returning

to (4.15), using (4.17), the sharp G̊arding inequality [H3, Theorem 18.1.14] and the

fact that F ∗s [Q,Fs] ∈ Ψ2s+1(X), we see that

Im〈Pu, F ∗s Fs〉 = 〈 i
2
[P0, F

∗
s Fs]u, u〉+ 〈QFsu, Fsu〉+ 〈F ∗s [Q,Fs]u, u〉

≤ 〈 i
2
[P0, F

∗
s Fs]u, u〉+ 〈QFsu, Fsu〉+ C‖u‖2

Hs+1
2

≤ 〈(−(s+ 1
2
)Dx1 +Q)Fsu, Fsu〉+ C‖u‖2

Hs+1
2
.

Since Dx1 is elliptic (and positive) on WF(Fs) we can use (3.1) to see that if s > s+

(where s+ is given in (4.9)) then

‖Fsu‖2

H
1
2
≤ − Im〈Pu, F ∗s Fsu〉+ C‖u‖2

Hs+1
2
≤ ‖Pu‖Hs‖F ∗s Fsu‖H−s + C‖u‖2

Hs+1
2

≤ 2‖Pu‖2
Hs + 1

2
‖Fsu‖2

H
1
2

+ C‖u‖2

Hs+1
2
.

Recalling the remark made after (4.15) this gives (4.14). Choosing A so that Fs ∈ Ψs+ 1
2

is elliptic on WF(A) we obtain

‖Au‖Hs+1 ≤ C‖B1Pu‖Hs + C‖B1u‖Hs+1
2
C‖u‖H−N . (4.18)

It remains to eliminate the second term on the right hand side. We note that WF(B1)∩
Char(A) forward controlled by {Char(A) in the sense of (4.2). Since (4.1) is satisfied

on WF(B1) ∩ Char(A) we apply (4.3) to obtain

‖B1u‖Hs+1
2
≤ C‖B2Pu‖Hs− 1

2
+ C‖Au‖

Hs+1
2

+ C‖u‖H−N

≤ C‖B2Pu‖Hs + 1
2
‖Au‖Hs + C ′‖u‖H−N , s+ 1

2
> −N,

(4.19)

where B2 has the same propeties as B1 but a larger microsupport. (Here we used an

interpolation estimate for Sobolev spaces based on ts+
1
2 ≤ γts + γ−2N−2s−1t−N , t ≥ 0

– that follows from rescaling τ s+
1
2 ≤ τ s + τ−N , τ ≥ 0.)

Combining (4.18) and (4.19) gives (4.10) with B1 replaced by B2. Relabeling the

operators concludes the proof. �

Proof of Proposition 3. The proof of (4.13) is similar to the proof of Proposition 2.

We now use Gs ∈ Ψ−s−
1
2 (X) given by the same formula:

Gs := ψ1(x1)ψ1(−∆h/D
2
x1

)ψ2(Dx1)D
−s− 1

2
x1 ∈ Ψ−s−

1
2 (X),

σ(Gs) =: gs(x, ξ) = ψ1(x1)ψ1(q(x, ξ′)/ξ2
1)ψ2(ξ1)ξ

−s− 1
2

1 .

However now,

gsHggs(x, ξ) = ξ
−s+ 1

2
1 gs(x, ξ)

(
2x1ψ

′
1(x1)ψ1(ξ2/ξ1) + 2ψ1(x1)(q(x, ξ′)/ξ2

1)ψ′1(q(x, ξ′)/ξ2
1)

−(s+ 1
2
)ψ1(x1)ψ1(q(x, ξ′)/ξ2

1)
)
ψ2(ξ1)

≤ −(s+ 1
2
)|ξ1|g2

s + C0|ξ1|−2sb(x, ξ)2,
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where b = σ(B) is chosen to control the terms involving tψ′1(t) (which now have the

“wrong” sign compared to (4.16)). The proof now proceeds in the same way as the

proof of (4.10) but we have to carry over the ‖Bu‖Hs terms. �

5. Proof of Theorem 1

We first show that kerXs P (λ) is finite dimensional when Imλ > −s − 1
2
. Using

standard arguments this follows from the definition (2.7) and the estimate (5.1) below.

To formulate it suppose that

χ ∈ C∞c (X), χ|x1<−2δ ≡ 0, χ|x1>−δ ≡ 1,

where δ > 0 is a fixed (small) constant. Then for u ∈Xs and s > − Imλ− 1
2
,

‖u‖H̄s+1(X◦) ≤ C‖P (λ)u‖H̄s(X◦) + ‖χu‖H−N (X). (5.1)

Proof of (5.1). If χ+ ∈ C∞c , suppχ+ ⊂ {x1 > 0} then elliptic estimates show that

‖χ+u‖Hs+1 ≤ ‖χ+u‖Hs+2 ≤ C‖Pu‖Hs + C‖χu‖H−N .

Near x1 = 0 we use the estimates (4.10) (valid for u ∈ Xs) – see Remark 2 after

Proposition 2) which give for, for χ0 ∈ C∞c , suppχ0 ⊂ {|x1| < δ/2}

‖χ0u‖Hs+1(X) ≤ C‖P (λ)u‖H̄s(X) + C‖χu‖H−N (X). (5.2)

To prove (5.2) we microlocalize to neighbourhoods of {±ξ1 > |ξ|/C} and use (4.10) for

P (λ) and −P (λ) respectively – from (2.3) we see that s+ = − Imλ− 1
2

for P = P (λ)

and s+ = − Imλ− 1
2

for P = −P (λ) (a rescaling by a factor of 4 is needed by comparing

(2.3) with (4.4)). Elsewhere the operator is elliptic in |x1| < δ.

Finally if χ− is supported in {x1 < −δ/2} then the hyperbolic estimate (3.6) shows

that

‖χ−u‖H̄s+1(X) ≤ C‖P (λ)u‖H̄s(X) + C‖χ0u‖Hs+1(X).

Putting these estimates together gives (5.1). �

To show that the range of P on Xs is of finite codimension (and hence closed [H3,

Lemma 19.1.1]) we need the following

Lemma 4. The cokernel of P (λ) in Ḣ−s(X) ' Y ∗
s (see (3.3))

cokerXs P (λ) := {v ∈ Ḣ−s(X) : ∀u ∈Xs, 〈P (λ)u, v〉 = 0},

is equal to the kernel of P (λ̄) on Ḣ−s(X): cokerXs P (λ) = kerḢ−s(X) P (λ̄) .

Proof. In view of (2.6) we have, for u ∈ C̄∞(X◦) and v ∈ Ḣ−s(X),

〈P (λ)u, v〉 = 〈u, P (λ̄)v〉.

Since C̄∞(X◦) is dense in Xs (see for instance Lemma [DyZw2, Lemma E.42]) it follows

that 〈P (λ)u, v〉 = 0 for all u ∈Xs if and only if P (λ̄)v = 0. �



VASY’S METHOD REVISITED 15

Hence to show that cokerXs is finite dimensional it suffices to prove that the kernel

of P (λ̄) is finite dimensional. We claim an estimate from which this follows:

u ∈ kerḢ−s(X) P (λ̄) =⇒ ‖u‖Ḣ−s(X) ≤ C‖χu‖H−N (X), s > − Imλ− 1
2

(5.3)

where χ is the same as in (5.1).

Proof of (5.3). The hyperbolic estimate (3.5) shows that if P (λ̄)u = 0 for u ∈ Ḣ−s(X)

(with any λ ∈ C or s ∈ R) then u|x1<0 ≡ 0. We can now apply (4.13) with P = P (λ)

near Γ− and P = −P (λ) near Γ+. We again see that the threshold condition is the

same at both places: we require that s > − Imλ− 1
2
. Since u vanishes in x1 < 0 there

WF(Bu) ∩ CharP (λ) = ∅ and hence (using (3.1)) ‖Bu‖Ḣ−s(X) ≤ C‖χu‖−N . Hence

(4.13) and elliptic estimates give (5.3). �

6. Asymptotic expansions

To prove Theorem 3 we need a regularity result for L2 solutions of

(−∆g − λ2 − (n
2
)2)−1u = f ∈ C∞c (M), Imλ > n

2
. (6.1)

To formulate it we recall the definition of X given in (2.4) and of X1 := X ∩{x1 > 0}.
We also define j : M → X1 to be the natural identification, given by j(y1, y

′) = (y2
1, y
′)

near the boundary. Then we have

Proposition 5. For Imλ� 1 and λ /∈ iN, the unique L2-solution u to (6.1) satisfies

u = y
−iλ+n

2
1 j∗U, U ∈ C̄∞(X1). (6.2)

In other words, near the boundary, u(y) = y
−iλ+n

2
1 U(y2

1, y
′) where U is smoothly ex-

tendible.

Remark. Once Theorem 3 is established then the relation between P (λ)−1 and the

meromorphically continued resolvent R(n
2
− iλ) shows that y−s1 R(s) : Ċ∞(M) →

j∗C̄∞(X1) is meromorphic away from s ∈ N – see §7. That means that away from

exceptional points (6.2) remains valid for u = R(n
2
− iλ).

To give a direct proof of Proposition 5 we need a few lemmas. For that we define

Sobolev spaces Hk
g (M,d volg) associated to the Laplacian −∆g:

Hk
g (M) := {u : y

|α|
1 Dα

y u ∈ L2(M,dvolg), |α| ≤ k}, ` ∈ N. (6.3)

(In invariant formulation can be obtained by taking vector fields vanishing at ∂M –

see [MazMe].) Let us also put

Q(λ2) := −∆g − λ2 − (n
2
)2. (6.4)

Lemma 6. With Hk
g (M) defined by (6.3) and Q(λ2) by (6.4) we have for any k ≥ 0,

Q(λ2)−1 : Hk
g (M)→ Hk+2

g (M), Imλ > n
2
. (6.5)
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Proof. Using the notation from the proof of (2.1) and Lemma 1 we write

Q(λ2) = (y1Dy1)
2 + y2

1d
∗
hd− i(n+ y2

1γ(y2
1, y
′))y1Dy1

so that for u ∈ C∞c (M) supported near ∂M , and with the inner products in L2
g =

L2(M,d volg),

〈Q(λ2)u, u〉L2
g

=

∫
M

(|y1Dy1|2 + y2
1|du|2h)d volg .

Hence, ‖u‖H1
g
≤ C‖Q(λ2)u‖L2

g
+ C‖u‖L2

g
. Using this and expanding 〈Q(λ)u,Q(λ)u〉L2

g

we see that

‖u‖H2
g
≤ C‖Q(λ2)u‖L2

g
+ C‖u‖L2

g
, u ∈ C∞c (M).

Since C∞c (M) is dense in H2
g (M) it follows that for Imλ > n

2
, Q(λ)2 : L2

g → H2
g .

Commuting y1V , where V ∈ C̄∞(M ;TM), with Q(λ2) gives the general estimate,

‖u‖Hk+2
g
≤ C‖Q(λ2)u‖Hk

g
+ C‖u‖L2

g
, u ∈ C∞c (M),

and that gives (6.5). �

Lemma 7. For any α > 0 there exists c(α) > 0 such that for Imλ > c(α),

yα1Q(λ2)−1y−α1 : L2
g(M)→ H2

g (M). (6.6)

Proof. We expand the conjugated operator as follows:

yα1Q(λ2)y−α1 = Q(λ2 + α2)− α(2iy1Dy1 − n− y2
1γ(y2

1, y
′))

= (I +K(λ, α))−1Q(λ2 + α2),

K(λ, α) := α(2iy1Dy1 − n− y2
1γ(y2

1, y
′))Q(λ2 + α2)−1.

(6.7)

The inverse of Q(λ2 + α2) exists due to the following bound provided by the spectral

theorem (since Spec(−∆g) ⊂ [0,∞)) and (6.5) (with k = 0):

‖Q(µ2)−1‖L2
g→Hk

g
≤ (1 + C|µ|)k/2

d(µ2, [−(n
2
)2,∞))

, k = 0, 2. (6.8)

It follows that for Imλ > c(α), I +K(λ, α) in (6.7) is invertible on L2
g. Hence we can

invert yα1Q(λ2)y−α1 with the mapping property given in (6.6). �

Proof of Proposition 5. The first step of the proof is a strengthening of Lemma 6 for

solutions of (6.1). We claim that if u solves (6.1) and u ∈ L2
g then, near the boundary

∂M ,

V1 · · ·VNu ∈ L2
g, Vj ∈ C̄∞(M,TM), Vjy1|y1 = 0, (6.9)

for any N . The condition on Vj means that Vj are tangent to the boundary ∂M (for

more on spaces defined by such conditions see [H3, §18.3]).
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To obtain (6.9) we see that if V is a vector field tangent to the boundary of ∂M

then

Q(λ2)V u = F := V f + [(y1Dy1)
2, V ]u+ y2

1[∆h(y21), V ]− i[(n+ y2
1γ(y))y1Dy1 , V ]

= V f + y2
1Q2u+ y1Q1u,

where Qj are differential operators of order j. Lemma 6 shows that F ∈ L2
g. From

Lemma 6 we also know that y1V u ∈ L2
g. Hence,

y1V u− y1Q(λ2)−1F ∈ L2
g, Q(λ2)y−1

1 (y1V u− y1Q(λ2)−1F ) = 0.

But for Imλ > c0, Lemma 7 shows that

Q(λ2)y−1
1 v = 0, v ∈ L2(M,dvolg) =⇒ v = 0. (6.10)

Hence V u = Q(λ2)−1F ∈ L2
g. This argument can be iterated showing (6.9).

We now consider P (λ) as an operator on X1, formally selfadjoint with respect to

dµ = dx1d volh. Since we are on open manifolds the two C∞ structures agree and we

can consider P (λ) as operator on C∞(M). Since

Q(λ2) = y
−iλ+n

2
1 y2

1P (λ)y
iλ−n

2
1 = x

− iλ
2

+n
4

1 x1P (λ)x
iλ
2
−n

4
1 ,

we can define

T (λ) := x
iλ
2
−n

4
1 Q(λ2)−1x

− iλ
2

+n
4

+1

1 , Imλ > n
2
, (6.11)

which satisfies

P (λ)T (λ)f = f, f ∈ C∞c (X1),

T (λ) : x
− ρ

2
− 1

2
1 L2 → x

− ρ
2

+ 1
2

1 L2, ρ := Imλ > n
2
.

(6.12)

Here we used the fact that 2dy1/y1 = dx1/x1 and that

L2(y−n−1
1 dy1dvolh) = L2

(
x
−n

2
−1

1 dx1dvolh

)
= x

n
4

+ 1
2

1 L2, L2 := L2(dx1dvolh).

Proposition 5 is equivalent to the following mapping property of T (λ):

T (λ) : C∞c (X1) −→ C̄∞(X1), Imλ ≥ c0, λ /∈ iN. (6.13)

To prove (6.13) we will use a classical tool for obtaining asymptotic expansions, the

Mellin transform. Thus let u = T (λ)f , f ∈ C∞c (X1). By replacing u by χ(x1)u,

χ ∈ C∞c ((−1, 1); [0, 1]), χ = 1 near 0, we can assume that

u ∈ C∞((0, 1)× ∂M) ∩ x−
ρ
2

+ 1
2

1 L2, P (λ)u = f1 ∈ C∞c ((0, 1)× ∂M), ρ > n
2
,

where smoothness for x1 > 0 follows from Lemma 6. In addition (6.9) shows that

V1 · · ·VNu ∈ x
− ρ

2
+ 1

2
1 L2(dx1dvolh), Vj ∈ C̄∞(X1, TX1), Vjx1|x1 = 0. (6.14)

In particular, for any k

xN1 u ∈ Ck([0, 1]× S1) (6.15)

if N is large enough.
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We define the Mellin transform (for functions with support in [0, 1)) as

Mu(s, x′) :=

∫ 1

0

u(x)xs1
dx1

x1

.

This is well defined for Re s > ρ/2:

‖Mu(s, x′)‖2
L2(dvolh) =

∫
S1

∣∣∣∣∫ 1

0

x
s+ iλ

2
− 1

2
1 (x

− iλ
2
− 1

2
1 u(x1, x

′))dx1

∣∣∣∣2 dvolh

≤
(∫ 1

0

t−ρ+2 Re s−1dt

)
‖x

ρ
2
− 1

2
1 u‖L2 = (2Res−ρ)−1‖x

ρ
2
− 1

2
1 u‖L2 .

In view of (6.9) s 7−→Mu(s, x2) is a holomorphic family of smooth functions in Re s >

ρ/2. We claim now that Mu(s, x′) continues meromorphically to all of C. In fact, from

(2.3) we see that for f2 := 1
4
f1,

M(x1f2)(s, x′) = M(1
4
x1P (λ)u)(s, x′) = −s(s+ iλ)Mu(s, x′) +M(Q2u)(s+ 1, x′),

where Q2 is a second order differential operator built out of vector fields tangent to the

boundary of X1. In view of (6.14) Q2u ∈ x
− ρ

2
+ 1

2
1 L2 which implies that M(Q2u)(s, x′)

is holomorphic in Re s > ρ/2. Also, s 7→ M(x1f2)(s, x′) is entire as f1 vanishes near

x1 = 0. Hence

Mu(s, x′) =
1

s(s+ iλ)
M(Q2u)(s+ 1, x′)− 1

s(s+ iλ)
M(x1f2)(s, x′), (6.16)

which means that s 7→Mu(s, x′) is meromorphic in Re s > ρ/2− 1. Melrose’s indicial

operator, I(s)w = x−s1 Q2(xs1w)|x1=0, w ∈ C∞(∂M), is a differential operator in x′ with

polynomial coefficients in s and

M(Q2u)(s+ 1, x′) = I(s)Mu(s+ 1, x′) +M(Q̃2u)(s+ 2, x′).

where Q̃2 is a second order operator built from vector fields tangent to ∂M . Hence

(6.16) can be iterated and that gives the meromorphic continuation of Mu(s, x′) with

possible poles at −iλ− k, k ∈ N.

The Mellin transform inversion formula, a contour deformation and the residue the-

orem (applied to simple poles thanks to our assumption that iλ /∈ Z) then give

u(x) ' xiλ1 (b0(x′) + x1b1(x′) + · · · ) + a0(x′) + x1a1(x′) + · · · , aj, bj ∈ C∞(∂M),

where the regularity of remainders comes from (6.15). (The basic point is that

M(xa1χ(x1))(s) = (s+ a)−1F (s), F (s) = −
∫
xa+s

1 χ′(x1)dx1,

so that F (s) is an entire function with F (−a) = 1.)
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Since Pu(x) = 0 for 0 < x1 < ε the equation shows that bk is determined by

b0, · · · bk−1. We claim that bk ≡ 0: if b0 6= 0 then

|x
ρ
2
− 1

2
1 u| = x

− 1
2

1 |b0(x′)|+O(x
1
2
1 ) /∈ L2(dx1dvolh).

contradicting (6.14). It follows that u ∈ C̄∞(X1) proving (6.13) and completing the

proof of Proposition 5. �

7. Meromorphic continuation

To prove Theorem 3 we recall that (−∆g − λ2 − (n
2
)2)−1 is a holomorphic family of

operators on L2
g for λ2 + (n

2
)2 /∈ Spec(−∆g) and in particular for Imλ > n

2
.

Proof of Theorem 3. We first show that for Imλ > 0, λ2 + 1
4
/∈ Spec(−∆g),

P (λ)u = 0, u ∈Xs, s > − Imλ− 1
2

=⇒ u ≡ 0. (7.1)

In fact, from (4.11) we see that u ∈ C̄∞(X). Then putting v(y) := y
−iλ+n

2
1 j∗(u|X1),

j : M → X1, (2.3) shows that (−∆g − λ2 − (n
2
)2)v = 0. For Imλ > 0 we have v ∈ L2

g

and hence from our assumptions, v ≡ 0. Hence u|X1 ≡ 0, and u ∈ C̄∞(X). Lemma 1

then shows that u ≡ 0 proving (7.1).

In view of Lemma 4 we now need to show that P (λ)∗w = 0, w ∈ Ḣ−s(X), implies

that w ≡ 0. It is enough to do this for λ /∈ iN and Imλ � 1 since invertibility at

one point shows that the index of P (λ) vanishes. Then (7.1) shows invertibility for all

Imλ > 0, λ2 + (n
2
)2 ∈ Spec(−∆g).

Hence suppose that P (λ)∗w = 0, w ∈ Ḣ−s(X). Estimate (3.5) then shows that

suppw ⊂ X1. (For −1 < x1 < 0 we solve a hyperbolic equation with zero initial

data and zero right hand side.) We now show that suppw ∩X1 6= ∅ (that is there is

some support in x1 > 0; in fact by unique continuation results for second order elliptic

operators, see for instance [H3, §17.2], this shows that suppw = X1). In other words

we we need to show that we cannot have suppw ⊂ {x1 = 0}. Since WF(w) ⊂ N∗∂X1

we can restrict w to fixed values of x′ ∈ ∂M and the restriction and is then a linear

combination of δ(k)(x1). But

P (λ̄)(δ(k)(x1)) = (k + 1− λ̄/i)δ(k+1)(x1)− iγ(x)(2i(k + 1)− λ̄− in−1
2

)δ(k)(x1),

and that does not vanish for Imλ > 0.

Mapping property (6.13) and the definition of P (λ) show that for any f ∈ C∞c (X1)

(that is f supported in x1 > 0) there exists u ∈ C̄∞(X1) such that P (λ)u = f in X1.

Then (with L2 inner products meant as distributional pairings),

〈f, w〉 = 〈P (λ)u,w〉 = 〈u, P (λ)∗w〉 = 0.
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Since w ∈ Ḋ(X1) and u ∈ C̄∞(X1) the pairing is justified. In view of support prop-

erties of w, we can find f such that the left hand side does not vanish. This gives a

contradiction. �

Remark. Different proofs of the existence of λ with P (λ) invertible can be ob-

tained using semiclassical versions of the propagation estimates of §4. That is done for

Imλ0 � 〈Reλ0〉 in [Va2] and for Imλ0 � 1 in [DyZw2, §5.5.3].

Theorem 3 guarantees existence of the inverse at many values of λ. Then standard

Fredholm analytic theory (see for instance [DyZw2, Theorem C.5]) gives

P (λ)−1 : Ys →Xs is a meromorphic family of operators in Imλ > −s− 1

2
. (7.2)

Proof of Theorem 1. We define

V (λ) : C∞c (M)→ C∞c (X), f(y) 7−→ Tf(x) :=

{
x
iλ
2
−n

4
−1

1 (j−1)∗f x1 > 0,

0, x1 ≤ 0,

U(λ) : C̄∞(X)→ C∞(M), u(x) 7−→ y
−iλ+n

2
1 j∗(u|X1),

where j : M → X1 is the map defined by j(y) = (y2
1, y
′) near ∂M . Then, for Imλ > n

2
,

(2.2) and (2.3) show that

R(n
2
− iλ) = U(λ)P (λ)−1V (λ). (7.3)

Since P (λ)−1 : C̄∞(X)→ C̄∞(X) is a meromorphic family of operators in C, Theorem

1 follows. �

Remarks. 1. The structure of the residue of P (λ)−1 is easiest to describe when the

pole at λ0 is simple and has rank one. In that case,

P (λ) =
u⊗ v
λ− λ0

+Q(λ, λ0), u ∈ C̄∞(X), v ∈
⋂

s>− Imλ0− 1
2

Ḣ−s(X1)

P (λ0)u = 0, P (λ̄0)v = 0,

and where Q(λ, λ0) is holomorphic near λ0. We note that u ∈ C∞(X) because of (4.11).

The regularity of v ∈ Ḣ−s, s > − Imλ0 − 1
2

just misses the threshold for smoothness

– in particular there is no contradiction with Theorem 3!

2. The relation (7.3) between R(n
2
− iλ) and P (λ) shows that unless the elements of

the kernel of P (λ̄) are supported on ∂X1 = {x1 = 0} then the multiplicities of the

poles of R(n
2
− iλ) agree.

For completeness we conclude with the proof of the following standard fact:

Proposition 8. If R(ζ) := (−∆g − ζ(n− ζ))−1 for Re ζ > n then

R(ζ) : L2(M,dvolg)→ L2(M,dvolg), (7.4)
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is meromorphic for Re ζ > n
2

with simple poles where ζ(n− ζ) ∈ Spec(−∆g).

Proof. The spectral theorem implies that R(ζ) is holomorphic on L2
g in {Re ζ > n

2
} \

[n
2
, n]. In the λ-plane that corresponds to {Imλ > 0} \ i[0, n

2
].

From (6.11) and (6.12) we see that boundeness of R(n
2
− iλ) on L2

g(M) is equivalent

to

P (λ)−1 : x
− ρ

2
− 1

2
1 L2(X1)→ x

− ρ
2

+ 1
2

1 L2(X1), ρ := Imλ. (7.5)

We will first prove (7.7) for 0 < ρ ≤ 1. From Theorem 3 we know that except at a

discrete set of poles, P (λ)−1 : H̄s(X1) → H̄s+1(X1), s > −ρ − 1
2
. We claim that for

−1 ≤ s < −1
2

xs1L
2(X1) ↪→ H̄s(X1), H̄s+1(X1) ↪→ xs+1

1 L2(X1). (7.6)

By duality the first inclusion follows from the inclusion

Ḣr(X1) ↪→ xr1L
2, 0 ≤ r ≤ 1. (7.7)

Because of interpolation we only need to prove this for r = 1 in which case it follows

from Hardy’s inequality,
∫∞

0
|x−1

1 u(x1)|2dx1 ≤ 4
∫∞

0
|∂2
x1
u(x1)|2dx1. The second inclu-

sion follows from (7.7) and the fact that H̄r(X1) = Ḣr(X1) for 0 ≤ r < 1
2

– see [Ta,

Chapter 4, (5.16)]. We can now take s = −ρ
2
− 1

2
in (7.6) which for 0 < ρ ≤ 1 is

in the allowed range. That proves (7.5) for 0 < Imλ ≤ 1, except at the poles and

consequently establishes (7.4) for n
2
< Re s ≤ n

2
+ 1. We can choose a polynomial

p(s) such that p(s)R(s) : C∞c (M)→ C∞(M) is holomorphic near [n
2
, n]. The maximum

principle applied to 〈p(s)R(s)f, g〉, f, g ∈ C∞c (M) now proves that p(s)R(s) is bounded

on L2
g(M) near [n

2
, n] concluding the proof. �
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[H] Lars Hörmander, On the existence and the regularity of solutions of linear pseudo-differential

equations, Enseignement Math. (2) 17(1971), 99–163.
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