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1. Introduction

We present the method introduced by András Vasy [V1],[V2] to prove meromorphic

continuations of resolvents of Laplacians on asymptotically hyperbolic spaces in a

simple model case. In particular, we prove Melrose’s radial estimates [M] indicating

the idea behind the general case. As explained in §9 the general case can be treated

by the same methods without additional difficulties. We present the details in the

simplest case for pedagogical reasons only.

We consider the Laplacian on (M, g) where

M = M0 ∪M1, M0 = (0, 1]y1 × S1
y2
, ∂M1 = {y1 = 1}, ∂M = {y1 = 0},

g|M0 =
dy2

1 + dy2
2

y2
1

.

Geometrically this corresponds to “half” of a hyperbolic funnel “cupped” at {y1 = 1}.
We have

−∆g = y2
1(D2

y1
+D2

y2
), Dyj =

1

i
∂yj , dvolg =

dy1dy2

y2
1

and

(−∆g − 1
4
− λ2)−1 : L2(M,dvolg)→ L2(M,dvolg), Imλ > 0. (1.1)

We want to continue this operator meromorphically to C:

(−∆g − 1
4
− λ2)−1 : L2

comp(M,dvolg)→ L2
loc(M,dvolg), λ ∈ C.

Moreover, we want to achieve it so that

(−∆g − 1
4
− λ2)−1 = U(λ)P (λ)−1V (λ), (1.2)

where U, V are holomorphic families of operators

V (λ) : L2
comp(M,dvolg)→ Ys, U(λ) : Xs → L2

loc(M,dvolg), Imλ > −s− 1

2
,

and

P (λ) : Xs → Ys, Imλ > −s− 1

2
,

is of a holomorphic family of Fredholm operators, Ys and Xs ⊃ Ys are suitable Hilbert

spaces, and P (λ) is invertible for Imλ� 1.

The operators U(λ) and V (λ) will be sufficiently explicit so that (1.2) implies that

(for λ /∈ −iN),

rank

∮
(−∆g − 1

4
− λ2)−1dλ =

1

2πi
trYs

∮
∂λP (λ)P (λ)−1dλ, (1.3)

where the integration is over any closed curve in Imλ > −s− 1
2
.
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For interesting applications it is crucial to consider the semiclassical case, that is,

uniform analysis as Reλ→∞ but to indicate the basic mechanism behind the mero-

morphic continuation we only present the Fredholm property and invertibility in the

upper half-plane.

2. Review of propagation of singularities

We recall the standard result about propagation of singularities due to Duistermaat–

Hörmander. In view of the applications here we present it in the case of second order

pseudodifferential opeerators. We use the notation of [H3, Chapter 18]

Suppose that X is a compact manifold and P ∈ Ψm(X) and that the symbol of P ,

σ(P ) ∈ Sm(T ∗X \ 0)/Sm−1(T ∗X \ 0) has a representative

p− iq ∈ Sm(T ∗X \ 0)

which is homogeneous of degree m.

For any operator A ∈ Ψm(X) we can define WF(A) ⊂ T ∗X \ 0 (the smallest subset

outside of which A has order −∞ – see [H3, (18.1.34)]). We also define Char(A) the

smallest conic closed set outside of which A is elliptic – see [H3, Definition 18.1.25].

The first estimate we recall is an elliptic estimate: suppose that A,B ∈ Ψ0(X)

satisfy

WF(A) ∩ (Char(B) ∪ Char(P )) = ∅, (2.1)

Then for any N there exists a constant K such that

‖Au‖Hs+m ≤ K‖BPu‖Hs +K‖u‖H−N . (2.2)

We now move to propagation estimates. For that we assume that in an open conic

subset of U ⊂ T ∗X,

q(x, ξ) ≥ 0, (x, ξ) ∈ U, (2.3)

and

p(x, ξ) = 0 =⇒ Hp and ξ∂ξ are linearly independent at (x, ξ). (2.4)

The radial vector field ξ∂ξ is invariantly defined as the generator of the R+ action on

T ∗X \ 0 (multiplication of one forms by positive scalars).

The basic propagation estimate is given as follows: suppose that A,B,B1 ∈ Ψ0(X)

have wave front sets contained in U .

In addition we assume that

(WF(A) ∪WF(B)) ∩WF(I −B1) = ∅,

and that WF(A) is forward controlled by {Char(B) in the following sense:

∀ (x, ξ) ∈WF(A) ∃T > 0 exp(−THp)(x, ξ) /∈ Char(B). (2.5)
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The crucial estimate is then given by

‖Au‖Hs+m−1 ≤ K‖B1Pu‖Hs +K‖Bu‖Hs+m−1 +K‖u‖H−N , (2.6)

where N is arbitrary and K is a constant depending on N . A direct proof can be found

in [H]. The estimate is valid with u ∈ D′(X) for which the right hand side is finite

– see [DZ2, Exercise E.27]. For our purposes it is enough to prove it for u ∈ Hs+m−1

with Pu ∈ Hs.

When the condition (2.3) is change to q ≤ 0 we need to change the sign in (2.5):

∀ (x, ξ) ∈WF(A) ∃T > 0 exp(+THp)(x, ξ) /∈ Char(B)

and (2.6) still holds. In that case we say that WF(A) is backward controlled by

{Char(B).

We outline the standard proof so that the argument for radial estimates (that is,

estimates when (2.4) is violated) in §4 is clear.

We note that to establish (2.6) we need to show that

‖Au‖Hs+m−1 ≤ K‖B1Pu‖Hs +K‖Bu‖Hs+m−1 +K‖B1u‖Hs+m− 3
2

+K‖u‖H−N , (2.7)

as we can then proceed by induction by using a “nested” sequence of operators, re-

placing B1 and A at each step. We first consider the case of m = 1 and s = 0. It is

enough to prove (2.7) for u ∈ C∞(X) as to obtain the case of u ∈ Hs+m−1, Pu ∈ Hs,

one can then proceed by approximation – see [DZ2, Lemma E.41].

The key step in proving (2.7) is the construction of an escape function f ∈ S0(T ∗X),

homogeneous of degree 0 outside a compact set, with the following properties:

f(x, ξ) ≥ 0, (x, ξ) ∈ T ∗X, f(x, ξ) > 0, (x, ξ) ∈WF(A),

f(x, ξ)Hpf(x, ξ) ≤ −βf(x, ξ)2 + C0b(x, ξ)
2, b ≡ σ(B),

supp f ∩WF(I −B1) = ∅.
(2.8)

Such f can be constructed for any β > 0 – see Fig. 1 and [DZ2, Lemma E.43].

We choose

F ∈ Ψ0(X), σ(F ) ≡ f, WF(F ) ∩WF(I −B1) = ∅. (2.9)

We write

ReP = (P + P ∗)/2, ImP = (P − P ∗)/2i,
so that σ(ReP ) ≡ p and σ(ImP ) = q. With this notation we have, for u ∈ C∞(X),

Im〈Pu, F ∗Fu〉 = 〈 i
2
[ReP, F ∗F ]u, u〉+ Re〈ImP u, FF ∗u〉. (2.10)

We now put

H := i
2
[ReP, F ∗F ] ∈ Ψ0(X), σ(H) ≡ fHpf,
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0 δ−T − δ
2 −T + δ

2

ellh(B1)

ellh(B) WFh(A)

Figure 1. The escape function g along one flow line and the restrictions

of WFh(A), ellh(B), ellh(B1) to this line. This figure is borrowed from

[DZ2, Fig. E.2] where the more general semiclassical case is considered;

we refer to [DZ2, Appendix E] for further details.

and note that in expressions involving Fu, u can be replaced by B1u at the expense

of errors controlled by ‖u‖H−N (that follows from the the condition in (2.9)). Hence,

the sharp G̊arding inequality [H3, §18.1] and (2.8) imply that

〈Hu, u〉 ≤ −β‖Fu‖2
L2 + C0‖Bu‖2

L2 + C‖B1u‖2
H−1/2 + C‖u‖2

H−N . (2.11)

On the other hand, the sharp G̊arding inequality applied to σ(ImP ) ≡ q ≤ 0 and

the fact that Re(F ∗[F, ImP ]) ∈ Ψ−1(X) give

Re〈(ImP )u, FF ∗〉 = Re〈(ImP )Fu, Fu〉+ Re〈F ∗[F, ImP ]u, u〉
≤ C1‖Fu‖2

L2 + C‖B1u‖2
H−1/2 + C‖u‖2

H−N ,

where the constant C1 is (obviously) independent of F .

Returning to (2.10) we see that for u ∈ C∞(X),

Im〈Pu, F ∗Fu〉 ≤ −(β − C1)‖Fu‖2
L2 + C0‖Bu‖2

L2 + C ′‖B1u‖2
H−1/2 + C ′‖u‖2

H−N ,

By choosing β > C1 + 1 we conclude that

‖Fu‖2 ≤ ‖Pu‖L2‖Fu‖L2 + C‖Bu‖2
L2 + C‖B1u‖2

H−1/2 + C‖u‖2
H−N .

Since F is elliptic on WF(A) the estimate (2.7) (with m = 1 and s = 0) follows.

To obtain the estimate for arbitrary m and s we change P to 〈D〉s−m+1P 〈D〉−s and

u to 〈D〉su and apply the same argument.

Eventually, it is much better to formulate this results in terms of the flow on the

compactified cotangent bundle, especially with semiclassical extensions in mind – see

[DZ1, Appendix C] and [DZ2, Appendix E]. In this presentation we refer only to the

classical version of the result.
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3. Review of hyperbolic estimates

Consider

P = D2
t −D2

x, (t, x) ∈ [0, 1]× S1. (3.1)

On what space does this operator become invertible?

To answer we recall the notions of Sobolev spaces on manifolds with boundary from

[H3, §B.2]. Let Rn
+ := {xn > 0} and let Hs(Rn) denote the usual Sobolev space. Then

H̄s(Rn
+) := {u ∈ D′(Rn

+) : ∃U ∈ Hs(Rn), u = U |Rn+},
‖u‖H̄s(Rn+) = min{‖U‖Hs(Rn) : u = U |Rn+},

Ḣs(R̄n
+) := {u ∈ Hs(Rn) : suppu ⊂ R̄n

+}, ‖u‖Ḣs(R̄n+) = ‖u‖Hs(Rn).

(3.2)

For s ∈ R the spaces Ḣ−s(R̄n
+) and H̄s(Rn

+) are dual with respect to the the L2-

inner product (extended from C∞c (Rn
+)× C̄∞c (Rn

+) – see [H3, Theorem B.2.1]). These

notions extend to manifolds with smooth boundaries and if the boundaries has multiple

components we can have different Sobolev spaces near each of them. For instance we

can define

H̃s([0, 1)× S1) := {u : ∃U ∈ Ḣs([0,∞)× S1) : u = U |[0,1)×S1}

H̃s((0, 1]× S1) := {u : ∃U ∈ Ḣs((−∞, 1])× S1) : u = U |(0,1]×S1}.
(3.3)

We now put

Xs = {u ∈ H̃s+1([0, 1)× S1) : Pu ∈ H̃s([0, 1)× S1)}, Ys = H̃s([0, 1)× S1). (3.4)

with obvious inner products. What is less obvious is that C̃∞ (restrictions to [0, 1)×S1

oif smooth functions supported in t > 0) is dense in Xs (see for instance [DZ2, Lemma

E.41]).

Then in fact

P : Xs → Ys (3.5)

is an invertible operator (and hence a Fredholm operator).

This in fact follows from general results about strictly hyperbolic operators – see

[H3, §23.2]. We recall the case which is important to us.

Suppose that P = D2
t − R(t, x,Dx), x ∈ N , where N is a compact manifold and

R ∈ C∞(Rt; Diff2(N)). Assume that P is strictly hyperbolic with respect t. For any

T > 0 and s ∈ R, let H̃s([0, T ) ×N) be defined by (3.3) (with S1 replaced by N and

1 by T ). Then

∀ f ∈ H̃s([0, T )×N) ∃ !u ∈ H̃s+1([0, T )×N), Pu = f. (3.6)

In particular, if we define the spaces Xs and Ys as in (3.4) then the operator (3.5)

is invertible.
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If P ∗ is the (formal) adjoint of P with respect to an L2 inner product then

P ∗ : Ỹ−s → X̃−s (3.7)

is invertible, where

X̃r = {u ∈ H̃r((0, T ]×N) : P ∗u ∈ H̃r−1([0, T )×N)},

Ỹr = H̃r−1((0, T ]×N).
(3.8)

These are not the dual space but they can be used to prove Fredholm properties of

operators similar to P .

In our application we will need the following estimates which can be concluded from

the invertibility of P and P ∗: if u ∈ H̄s((0, T )×N) then

‖u‖H̄s+1((T/2,T )×N) ≤ C‖Pu‖H̄s((0,T )×N) + C‖u‖H̄s+1((0,T/2))×N). (3.9)

If v ∈ H̃−s((0, T ]×N) and P ∗v ∈ H−s−1 then

‖v‖H̃−s((0,T ]×N) ≤ C‖P ∗v‖H̃−s−1((0,T ]×N). (3.10)

We stress that the support condition in the definition of H̃−s effectively fixes zero

“initial” (final) condition at t = T .

4. Radial estimates in the model case

To obtain meromorphic continuation of the resolvent (1.1) we need propagation

estimates at radial points in addition to the standard propagation estimates reviewed

in §2. These estimates were developed by Melrose [M] in the context of scattering

theory on asymptotically Euclidean spaces and are crucial in the Vasy approach [V1].

A semiclassical version valid for very general radial sets was given in Dyatlov–Zworski

[DZ1] (see also [DZ2, Appendix E]).

Suppose that X = R × S1 and P ∈ Ψ2(X) with σ(P ) represented by p ∈ S2(T ∗X)

where

p = x1ξ
2
1 + ξ2

2 . (4.1)

The Hamilton vector field is given by

Hp = ξ1(2x1∂x1 − ξ1∂ξ1) + 2ξ2∂x2 . (4.2)

We see that the condition (2.4) is violated at

Γ := {(0, x2, ξ1, 0) : x2 ∈ S1, ξ1 ∈ R \ 0} ⊂ T ∗X \ 0. (4.3)

Nevertheless we have the following propagation estimates valid in spaces with restricted

regularity.

There exists s0 ≥ 0 (depending on lower order terms in P ) such that for s ≥ s0

‖Au‖Hs+1 ≤ K‖B1Pu‖Hs +K‖B1u‖Hs0 +K‖u‖H−N , (4.4)
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∂T
∗
ML

A

B1

∂T
∗
ML

A

B1

B

Figure 2. An illustration of the behaviour of the Hamilton flows for ra-

dial sources (left, L = ∂Γ+, boundary of the compactification of the conic

set Γ+ – see below) and for radial sinks (right, L = ∂Γ−) and of the lo-

calization of operators in the estimates (4.4) and (4.5) respectively. The

horizontal line on the top denotes the boundary, ∂T
∗
X, of the compact-

ified cotangent bundle T
∗
X. The shaded half-discs then correspond to

conic neighbourhoods in T ∗X. Near Γ± an explicit (projective) compact-

ification is given by r = 1/|ξ1|, (so that ∂T
∗
X = {r = 0}), θ = ξ2/|ξ1|,

with x (the base variable) unchanged. In this variables, near ∂Γ±
(boundaries of compactifications of Γ± we check that r∂r = −ξ1∂ξ1−ξ2∂ξ2
and θ∂θ = ξ2∂ξ2 . Hence near Γ±, Hp = ±r(θ∂θ + r∂r + 2x1∂x1 + 2θ∂x2)

and (after rescaling) we see a source and a sink.

for any A,B1 ∈ Ψ0 such that

WF(A) ∩WF(I −B1) = ∅, WF(B1) ⊂ U,

where U is a (small) conic neighbourhood of

Γ+ := Γ ∩ {ξ1 > 0},

with Γ given by (4.3). That is a radial source estimate.

Remark. We prove (4.4) for u ∈ C∞ but the approximation argument [DZ2, Lemma

E.41] shows that it is then valid for u ∈ Hs+1 such that Pu ∈ Hs. However using a

standard regularization argument [DZ2, Exercise E.27] (4.4) holds for all u ∈ D′(X)

such that the right hand side is finite. That will be used in §8 where we need the fact

that Pu = 0 and u ∈ Hs0 implies u ∈ C∞.

Now suppose that A and B satisfy the same conditions but with U a (small) conic

neighbourhood of

Γ− := Γ ∩ {ξ1 < 0}.
(The smallness of U means that U stays away from Γ+ := Γ ∩ {ξ1 > 0}.) Assume in

addition B ∈ Ψ0(X), WF(B) ⊂WF(B1) and that {Char(B) forward controls WF(A)

in the sense of (2.5).

Then, with the same s0 as in (4.4), for s ≥ s0,

‖Au‖H−s+1 ≤ K‖B1P
∗u‖H−s +K‖Bu‖H−s +K‖u‖H−N . (4.5)
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This is a radial sink estimate. The principal symbols of P and P ∗ are the same but s0

depends on lower order terms – see (4.9).

Proof of (4.4). We would like to mimic the proof (2.7) but with F producing a global

good sign for the commutator (since in (2.7) we do not have the control term Bu). We

take ψ1 ∈ C∞c ((−2δ, 2δ); [0, 1]), ψ1(t) = 1, for |t| < δ, tψ′1(t) ≤ 0, and ψ2 ∈ C∞(R),

ψ2(t) = 0 for t ≤ 1, ψ2(t) = 1, t ≥ 2, and propose

Fs := ψ1(x1)ψ1(Dx2/Dx1)ψ2(Dx1)D
s− 1

2
x1 ∈ Ψs− 1

2 (X),

σ(Fs) ≡ fs(x, ξ) = ψ1(x1)ψ1(ξ2/ξ1)ψ2(ξ1)ξ
s− 1

2
1 .

We note that because of the cut-off ψ2, Ds
x1

and Dx2/Dx1 are well defined.

For |ξ| > 3 (which implies that ξ1 > 2 on the support of fs if δ is small enough),

Hpfs(x, ξ) = ξ
s+ 1

2
1 (2x1ψ

′
1(x1)ψ1(ξ2/ξ1) + ψ1(x1)(ξ2/ξ1)ψ′1(ξ2/ξ1)

−(s− 1
2
)ψ1(x1)ψ1(ξ2/ξ1)

)
ψ2(ξ1) ≤ −(s− 1

2
)ξ1fs.

In particular,

fsHpfs + (s− 1
2
)ξ1f

2
s ≤ 0, |ξ| > 3. (4.6)

We now repeat the argument reviewed in §2 paying more attention to lower order

terms. We write

P = P0 +R + iQ, P0 := x1D
2
x1

+D2
x2
− iDx1 ,

R,Q ∈ Ψ1(X), P0 = P ∗0 , R∗ = R, Q = Q∗,
(4.7)

where we take formal adjoints with respect to the measure dx1dx2. Hence, arguing as

in the proof of (2.7),

Im〈Pu, F ∗s Fs〉 ≤ 〈Hu, u〉+ Re〈QFu, Fu〉+ C‖B1u‖2

Hs− 1
2

+ C‖u‖2
H−N ,

where now H = i
2
[P0, F

∗
s Fs].

From this and (4.6) we see that if

((s− 1

2
)ξ1 − σ(Q))f 2

s ≥ cξ1f
2
s , c > 0, (4.8)

then

‖Fsu‖2

H
1
2
≤ C‖B1Pu‖Hs−1‖Fsu‖H 1

2
+ C‖B1u‖2

Hs− 1
2

+ C‖u‖2
H−N .

Ellipticity of Fs ∈ Ψs− 1
2 on WF(A) (assumed to lie in a small neighbourhood of Γ+)

shows that

‖Au‖Hs ≤ C‖B1Pu‖Hs−1 + C‖B1u‖Hs− 1
2

+ C‖u‖H−N .
We need s− 1

2
> s0 where (4.8) gives us the natural condition on s0:

− s0 + ξ−1
1 σ(Q) ≤ 0 in a conic neighbourhood of Γ+. (4.9)

�



10

Remark. The estimate (4.4) holds also for sinks but the condition (4.9) changes. We

apply the argument above to −P (so that the direction of the flow changes) and then

we need

− s0 − ξ−1
1 σ(Q) ≤ 0 in a conic neighbourhood of Γ−. (4.10)

The proof of (4.5) is similar with a different sign and a need for a control operator B

(since propagation is now towards the region where A lives and the sign of the terms

coming from ψ(x1) and ψ(ξ2/ξ1) is “wrong”).

5. Fredholm property for the extended operator

Returning to (1.1) we consider solving

(−∆g − λ2 − 1
4
)u± = f ∈ C∞c (M), M = (0, 1)y1 × S1 ∪M1, ∂M1 = {y1 = 1} ⊂M0,

demanding that

u±(x) = y
∓iλ+ 1

2
1 F±(x), F±|M0 ∈ C∞([0, 1]× S1),

see for instance [GZ, (3.6)] for a general discussion. These are the outgoing (+) and

incoming (-) solutions.

In particular, for ± Imλ > 0, λ2 + 1
4
/∈ Spec(−∆g), a unique solution exists and it

lies in L2(M,dvolg). In view of (1.1) we see that

u+ = (−∆g − λ2 − 1
2
)−1f, y

iλ− 1
2

1 u+|M0 ∈ C∞([0, 1]× S1), (5.1)

see §6 for a direct proof of a stronger statement.

In this terminology, we want to construct the meromorphic continuation of the

outgoing resolvent.

Of course (except in special cases), y
iλ− 1

2
1 u− /∈ C∞([0, 1] × S1). In view of (5.1)

the outgoing condition can be formulated by requiring regularity of solutions to an

equation conjugated by y
−iλ− 1

2
1 and solved by F+. Here we extend y1 to be a constant

outside of a neighbourhood of 0 – there are some subtleties in the semiclassical case

when we need invertibility of the extended operator.

Hence we consider

y
iλ− 1

2
1 (−∆g − λ2 − 1

4
)y
−iλ+ 1

2
1 = y2

1D
2
y1
− (2λ+ i)y1Dy1 + y2

1D
2
y2
. (5.2)

Then we perform the following change of variables

x1 = y2
1, x2 = y2

so that Dy1 = 2y1Dx1 , D
2
y1

= 4y2
1D

2
x1
− 2iDx1 , and

y
iλ− 1

2
1 (−∆g − λ2 − 1

4
)y
−iλ+ 1

2
1 = x1

(
4x1D

2
x1
− 4(λ+ i)Dx1 +D2

x2

)
. (5.3)
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θ = 0

θ = π

y = 0

Figure 3. The radial sets and the direction of the flow: y = −x1,

(ξ1, ξ2) = −|ξ|(cos θ, sin θ). The radial source, Γ+, corresponds to θ = π

and the radial sink, Γ−, to θ = 0.

We now define

P0(λ) := 4x1D
2
x1
− 4(λ+ i)Dx1 +D2

x2
, (x1, x2) ∈ X0 := (0, 1)× S1. (5.4)

For x1 < 0 the operator P0(λ) in (5.4) is hyperbolic and we can simply extend it by

imposing no boundary conditions at x1 = −1.

Remark. For λ ∈ R the operator −∆g is self–adjoint with respect to the measure

dy1

y2
1

dy2.

Hence the conjugated operator is self-adjoint with respect to the measure

dy1

y1

dy2 =
1

2

dx1

x1

dx2.

Since that operator is equal to x1P (λ) we see that P (λ) is formally self-adjoint with

respect to dx1dx2. All the adjoints will now be taken with respect to this measure

(what really matters to us the behaviour at x1 = 0). With this convention we see that,

for all λ ∈ C,

P (λ)∗ = P (λ̄). (5.5)

The spaces are now defined as

Ys := H̄s(X), Xs := {u ∈ H̄s+1(X) : P (λ)u ∈ H̄s(X)}, (5.6)

where

X = (−1, 1)× S1 ∪M1, ∂X = {−1} × S1,
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-0.5

0

0.5

1

Figure 4. Plots of the characteristic sets of the semiclassical principal

symbol, p(x, ξ) = x1ξ
2
1 − zξ1 + ξ2

2 , for z = 1 and different values of ξ2.

The x-axis corresponds to x1 and the y-axis to ρ := 2 arctan(ξ1)/π. The

source x1 = 0, ρ = 1 and the sink x1 = 0, ρ = −1 are shown with

the flow lines of Hp. The key fact is the separation of the characteristic

set into two disjoint components corresponding to ρ ≥ 0 and ρ < 0.

Understanding of this flow is important when considering the high energy

problem. See also Fig. 5 where the characteristic sets for more values of

ξ2 are shown and the separation is even more dramatic.

and the Sobolev spaces H̄s are defined in (3.2). We note that there is no dependence on

lower order terms in the definition so effectively we could demand that (x1D
2
x1

+D2
x2

)u ∈
H̄s(X).

We now have the following crucial result:

P (λ) : Xs −→ Ys is a Fredholm operator for s+ frac12 > − Imλ. (5.7)

Proof of (5.7). If χ+ ∈ C∞c , suppχ+ ⊂ {x1 > 0} then elliptic estimates show that

‖χ+u‖Hs+1 ≤ ‖χ+u‖Hs+2 ≤ C‖Pu‖Hs + C‖u‖H−N .
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Figure 5. Same plot as in Fig. 4 but with more values of ξ2. The

separation of the two components of the characteristic set is visible more

dramatically. What should be noted that the only way for a trajectory

to go from x1 = 0 into x1 > 0 and back is by starting at the radial

source. Trajectories which enter x1 < 0 from x1 > 0 never come back –

that is crucial for the non-trapping estimates.

Near x1 = 0 we use the estimates (4.4) which give for, for χ0 ∈ C∞c , suppχ0 ⊂
{|x1| < 1/2}

‖χ0u‖Hs+1 ≤ C‖Pu‖Hs + C‖u‖Hs0 , s > s0

(We need to microlocalize to neighbourhoods of {±ξ1 > |ξ|/C}, use (4.4) for P and

−P respectively – see the remark preceding (4.10). Elsewhere the operator is elliptic.)

To calculate the value of s0 we return to (4.9) which we need to rescale:

−4s0 + ξ−1
1 σ(Q) ≤ 0,
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where in the notation of (4.7)

P = 4x1D
2
x1
− 4(λ+ i)Dx1 +D2

x2
, P0 = 4x1D

2
x1

+D2
x2
− 4iDx1 ,

Q = −4 ImλDx1 , R = −4 ReλDx1 .

Hence we need,

s0 ≥ − Imλ (5.8)

Finally if χ− is supported in {x1 < −1/3} then the hyperbolic estimate (3.9) shows

that

‖χ−u‖H̄s+1(X) ≤ C‖Pu‖H̄s(X) + C‖u‖H̄s+1({x1>1/3})).

Putting these estimates together gives

‖u‖X s ≤ ‖Pu‖Y s + ‖u‖Hs0 .

If s > s0 this immediately shows that the kernel of P is finite dimensional.

To show that the range of P on Xs is of finite codimension we note that if v ∈ Ḣ−s
is orthogonal to Pu for all u ∈ C̄∞(X) (we recall that C̄∞(X) is dense in X s – see

the remark after (3.4)), then P ∗v = 0. We can then use (3.10) to see that v ≡ 0 in

{x1 < 0}. For s > s0 the estimates (4.5) show that

‖χ0v‖Ḣ−s(X) ≤ C‖P ∗v‖Ḣ−s−1(X) + C‖v‖Ḣ−N (X) = C‖v‖Ḣ−N (X).

(The control term is negligible as v = 0 for x1 < 0 and all the bicharacteristics

propagate into that region – see Fig. 3.) Finally we have the elliptic estimate

‖χ+v‖Ḣ−s ≤ C‖v‖Ḣ−N ,

and hence

P ∗v = 0, v ∈ Ḣ−s(X) =⇒ ‖v‖Ḣ−s ≤ C‖v‖Ḣ−N ,
and hence the space of v ∈ Ḣ−s such that 〈v, Pu〉 = 0, for all u ∈ Xs, is finite

dimensional. (To show that this implies that the image of Xs has finite codimension

requires a standard functional analysis argument – see [H4, Proof of Theorem 26.1.7].)

�

6. Asymptotic expansions

Let X1 = (0, 1) × S1 ∪M1 and consider P0(λ) given by (5.4) in x1 > 0. Under the

changes of variables y2
1 = x1 we have

−∆g − λ2 − 1
4

= y
−iλ+ 1

2
1 y2

1P0(λ)y
iλ− 1

2
1 ,

and

(−∆g − λ2 − 1
4
)−1 : L2(M,dvolg) −→ L2(M,dvolg), Imλ > 0
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(we always assume that λ2 + 1
4
/∈ Spec(∆g)). Hence we have a formal inverse,

P0(λ)−1 = x
iλ
2
− 1

4
1 (−∆g − λ2 − 1

4
)−1x

− iλ
2

+ 5
4

1 .

with the mapping property

P0(λ)−1 : x
− ρ

2
− 1

2
1 L2 → x

− ρ
2

+ 1
2

1 L2, ρ := Imλ > 0. (6.1)

Here we used the fact that 2dy1/y
2
1 = dx1/x

3/2
1 and that

L2(y−2
1 dy1dy2) = L2

(
x
− 3

2
1 dx1dx2

)
= x

3
4
1L

2, L2 := L2(dx1dx2).

In particular,

P0(λ)−1 : C∞c (X1) −→ x
− ρ

2
+ 1

2
1 L2, ρ = Imλ > 0, (6.2)

We claim that in fact we have a stronger mapping property than (6.2):

P0(λ)−1 : C∞c (X1) −→ C̄∞(X1), Imλ ≥ c0, iλ /∈ Z. (6.3)

This implies a stronger version of (5.1) since the smoothness is now in (y2
1, y2). Here

c0 > 0 is some fixed constant.

To prove (6.3) we will use a classical tool for obtaining asymptotic expansions, the

Mellin transform – see [Ma, Theorem 7.3] for a general version and references.

Suppose that

P0(λ)u = f, f ∈ C∞c (X1), u ∈ x−
ρ
2

+ 1
2

1 L2, ρ = Imλ ≥ c0, (6.4)

for some sufficiently large constant c0 > 0. We want to show that u ∈ C̄∞((0, 1)×S1).

By replacing u by χ(x1)u,

χ ∈ C∞c ((−1, 1); [0, 1]), χ = 1 near 0,

we can assume that

u ∈ C∞((0, 1)x1 × S1) ∩ x−
ρ
2

+ 1
2

1 L2, (6.5)

where smoothness for x1 > 0 follows from ellipticity of P0(λ) there.

We need the following result

(6.4) =⇒ (x1Dx1)
`Dk

x2
u ∈ x−

ρ
2

+ 1
2

1 L2 (6.6)

This implies that for any k

xN1 u ∈ Ck([0, 1]× S1) (6.7)

if N is large enough.

The proof of a more general version is presented in the general case in the Appendix

to §9 – this is the only place where the model case is significantly simpler as one can

separate variables.
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Proof of (6.3). We define the Mellin transform (for functions with support in [0, 1))

as

Mu(s, x2) :=

∫ 1

0

u(x)xs1
dx1

x1

.

This is well defined for Re s > ρ/2:

‖Mu(s, x2)‖2
L2(dx2) =

∫
S1

∣∣∣∣∫ 1

0

x
s+iλ/2−1/2
1 (x

−iλ/2−1/2
1 u(x1, x2))dx1

∣∣∣∣2 dx2

≤
(∫ 1

0

t−ρ+2 Re s−1dt

)
‖xρ/2−1/2

1 u‖L2

= (2 Re s− ρ)−1‖xρ/2−1/2
1 u‖L2 .

In view of (6.6)

s 7−→Mu(s, x2).

is a holomorphic family of smooth functions in Re s > Imλ/2. We claim now that

Mu(s, x2) continues meromorphically to all of C. In fact,

M(x1f)(s, x2) = M(x1P (λ)u)(s, x2) = −s(s+ iλ)Mu(s, x2) +D2
x2
Mu(s+ 1, x2),

where s 7→M(x1f)(s, x2) is entire as f vanishes near x1 = 0.

Hence,

Mu(s, x2) =
D2k
x2
Mu(s+ k + 1)

s(s+ iλ) · · · (s+ k)(s+ k + iλ)

−
k∑
j=0

D2j
x2
M(x1f)(s+ j, x2)

s(s+ iλ) · · · (s+ j)(s+ j + iλ)
,

and that provides a meromorphic continuations with possible poles at −iλ− k, k ∈ N.

The Mellin transform inversion formula, a contour deformation and the residue the-

orem (applied to simple poles thanks to our assumption that iλ /∈ Z) then give

u(x) = xiλ1 (b0(x2) + x1b1(x2) + · · · ) + a0(x2) + x1a1(x2) + · · · ,

where the regularity of remainders comes from (6.7). (The basic point is that

M(xa1χ(x1))(s) = (s+ a)−1F (s), F (s) = −
∫
xa+s

1 χ′(x1)dx1,

so that F (s) is an entire function with F (−a) = 1.)

Since Pu(x) = 0 for 0 < x1 < ε the equation shows that bk is determined by

b0, · · · bk−1. We claim that bk ≡ 0: if b0 6= 0 then

v(y) = y
−iλ− 1

2
1 u(y2

1, y2) = y
iλ+ 1

2
1 b0(y2) +O(yiλ+ 3

2 ) +O(1),

would not be in L2(M,dvolg). This completes the proof of (6.3). �
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7. Additional hyperbolic estimates

Here we will show that if

u ∈ C∞([−1, 1]× S1), u|x1≥0 ≡ 0, P (λ)u = 0 =⇒ u ≡ 0. (7.1)

As pointed out by András Vasy this follows from general properties of the de Sitter

wave equation [V3, Proposition 5.3] but we provide a simple direct proof.

Proof of (7.1): We note that if u|x1≥−ε = 0 for some ε > 0 then u ≡ 0 by standard

energy estimates. We want to make that argument quantitative. Hence, for x1 < 0,

we write

div

(
1

2
|x1|−N(−x1|ux1 |2 + |ux2|2),−|x1|−N Re ūx1ux2

)
= −|x1|−N ūx1P (λ)u

−N |x1|−N−1(−x1|ux1|2 + |ux2|2) + 1
2
|x1|−N |ux1|2 + (iλ− 1)|x1|−N |ux1|2.

Fix δ > 0. Applying the divergence theorem we see that for N large enough (depending

on λ) we have∫
S1

(|ux1|2 + |ux2 |2)|x1=δ dx2 ≤ Cε−N
∫
S1

(|ux1|2 + |ux2|2)|x1=ε dx2

≤ CKε
−N+K ,

for any K, as ε → 0+ (since u vanishes to infinite order at x1 = 0). By choosing

K > N we see that the left hand side is 0 and that implies that u is zero. �

8. Meromorphic continuation

To show that P (λ)−1 : Ys →Xs is a meromorphic family of operators for

Imλ > −s− 1

2

we need to find λ0 such that P (λ0) : Xs → Ys is invertible. In fact we claim that

Imλ0 > 0, λ2
0 + 1

4
/∈ Spec(−∆g), s > 0 =⇒ P (λ0) : Xs → Ys is invertible. (8.1)

To prove it we start with

Imλ0 > 0, λ2
0 + 1

4
/∈ Spec(−∆g), P (λ0)u = 0, u ∈Xs, s > 0 =⇒ u ≡ 0. (8.2)

Proof of (8.2). We note that if u ∈Xs satisfied P (λ0)u = 0 then

(−∆g − λ2
0 − 1

4
)v = 0, v(y) := y

−iλ0+ 1
2

1 u(y2
1, y2).

For Imλ0 > 0, v ∈ L2(M,dvolg) that contradicts (1.1) once we make sure that λ2
0 + 1

4

cannot be an eigevalues of −∆g.
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Hence u|x1>0 ≡ 0, u ∈ C∞([−1, 1]×S1), and P (λ) ≡ 0. From (7.1) we conclude that

u ≡ 0. �

Proof of (8.1). In view of (8.2) we need to show that P (λ0)∗w = 0, w ∈ Ḣ−s(X),

implies that w ≡ 0. It is enough to do this for λ0 /∈ iN since invertibility at one point

shows that the index of P (λ) is zero and invertibility for all Imλ > 0 (except when

λ2 + 1
4
∈ Spec(−∆g)) follows from (8.2).

Arguing as in the proof of (5.7) we see that

suppw ⊂ X1, X1 := (0, 1]× S1 ∪M1,

that is w ∈ Ḣ−s(X1).

We now show that suppw ∩ X1 6= ∅ (that is there is some support in x1 > 0; in

fact by unique continuation results for second order elliptic operators (see for instance

[H3, §17.2]) this shows that suppw = X1). In other words we we need to show that

we cannot have suppw ⊂ {x1 = 0}. Since WF(w) ⊂ N∗∂X1 we can restrict w to

x2 = const and it is then a linear combination of δ(k)(x1). But P (λ̄0)(δ(k)(x1)) =

(k + 1− λ̄0/i)δ
(k+1) and that does not vanish for Imλ0 > 0.

Mapping property (6.3) and the definition of P (λ) show that for any f ∈ C∞c (X1)

(that is f supported in x1 > 0) there exists u ∈ C̄∞(X1) such that P (λ0)u = f in X1.

Then (with L2 inner products meant as distributional pairings),

〈f, w〉 = 〈P (λ0)u,w〉 = 〈u, P (λ0)∗w〉 = 0.

Since w ∈ Ḋ(X1) and u ∈ C̄∞(X1) the pairing is justified. In view of support prop-

erties of w, we can find f such that the left hand side does not vanish. This gives a

contradiction. �

Remark. A different proof of the existence of λ0 with P (λ0) invertible is obtained

using semiclassical versions of the propagation estimates of §§2 and 4 after an additional

conjugation by (1 + x1/2)iλ/4 (to guarantee semiclassical ellipticity for Imλ � 1)

providing invertibility of P (λ0) for Imλ0 � 1.

Existence of the inverse at some point λ0 (guaranteed by (8.1)) and the standard

Fredholm analytic theory [DZ2, Theorem C.5] give that

P (λ)−1 : Ys →Xs is a meromorphic family of operators in Imλ > −s− 1

2
. (8.3)

We can now define the meromorphic family

R(λ) : C∞c (M)→ C∞(M), λ ∈ C

such that

R(λ) = (−∆− λ2 − 1
4
)−1, Imλ > 0.
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First we put

V (λ) : C∞c (M)→ C∞c (X), f(y) 7−→ Tf(x) :=

{
x
i
2
λ− 5

4
1 f(

√
x1, x2), x1 > 0,

0, x1 ≤ 0,

U(λ) : C∞(X)→ C∞(M), u(x) 7−→ y
−iλ+ 1

2
1 u(y2

1, y2),

and then

R(λ) = U(λ)P (λ)−1V (λ). (8.4)

9. The general case

The general case is analyzed by the same type of arguments once we assume that

the metric on M , near ∂M , is given by

g =
dy2

1 + h(y2
1, y
′, dy′)

y2
1

, y1|∂M = 0, dy1|∂M 6= 0, y′ ∈ ∂M. (9.1)

The class of even asymptotically hyperbolic metrics can be put into this normal form

– see [V2] and references given there.

Near ∂M , the Laplacian has the form (dimM = n)

−∆g = (y1Dy1)
2 − i(n− 1 + y2

1γ(y2
1, y
′))y1Dy1 − y2

1∆h,

where ∆h is the Laplacian for the family of metrics depending on y2
1 and γ ∈ C∞.

We now have

y
iλ−n−1

2
1 (−∆g − λ2 − (n−1)2

4
)y
−iλ+n−1

2
1 = x1P (λ), x1 = y2

1, x′ = y′,

where

P (λ) = 4(x1D
2
x1
− (λ+ i)Dx1) + ∆h − iγ(x)

(
2x1Dx1 − λ− in−1

4

)
. (9.2)

There is no conceptual (and very little technical – we address what seems to be the only

point below) difference between the analysis we presented (with γ ≡ 0 and ∆h = D2
x2

)

and the case of P (λ) above.

Hence we obtain the meromorphic continuation of

P (λ)−1 : C∞c (X1) −→ C̄∞(X1)

which gives the meromorphic continuation of

(−∆g − λ2 − (n−1)2

4
)−1 : C∞c (M) −→ C∞(M). (9.3)

In fact we get all the precise statements derived in the model case. As first shown by

Vasy in [V1],[V2] this recovers and strengthens the results of Mazzeo–Melrose [MaM]

and Guillarmou [Gu].
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Appendix. The special structure of P (λ) in the model case was used in the proof

of (6.6). The analogue of (6.6) for operators of the form (9.2) is given as follows: for

Imλ ≥ c0 > 0, λ /∈ iN, and

L2 = L2((0, 1)x1 × ∂Mx′ ; dx1dx
′),

P (λ)u = f ∈ C∞c ((0, 1)× ∂M), u ∈ x−
ρ
2

+ 1
2

1 L2 =⇒ (x1Dx1)
`Dα

x′u ∈ x
− ρ

2
+ 1

2
1 L2, (9.4)

for any ` ∈ N and α ∈ Nn−1.

Proof of (9.4). We will prove (9.4) working in the original coordinates y. Writing

Q(λ2) := −∆g − λ2 − (n−1)2

4
,

(9.4) is equivalent to

Q(λ2)u ∈ C∞c ((0, 1)× ∂M), u ∈ L2 =⇒ (y1Dy1)
`Dα

y′u ∈ L2, (9.5)

L2 := L2(M,dvolg).

From invertibility of Q(λ2) away from the spectrum we see that†

Q(λ2)−1 : Hk(M,dvolg)→ Hk+2(M,dvolg),

Hk(M,dvolg) := {u : (y1Dy1)
`y
|α|
1 Dα

y′u ∈ L2(M,dvolg), `+ |α| ≤ k}, ` ∈ N.
(9.6)

From the spectral theorem we also have, for Imλ > 0,

‖Q(λ2)−1‖L2→L2 =
1

d(λ2, Spec(−∆g − (n−1)2

4
))
,

‖Q(λ2)−1‖L2→H2 ≤ (1 + C|λ|)
d(λ2, Spec(−∆g − (n−1)2

4
))

(9.7)

We now consider weighted estimates and, for λ2 +α2 /∈ Spec(−∆g− (n−1)2

4
), we write

yα1Q(λ2)y−α1 = Q(λ2 + α2) + α(2iy1Dy1 − n+ 1y2
1γ(y2

1, y
′))

=
(
I + α(2iy1Dy1 − n+ y2

1γ(y2
1, y
′))Q(λ2 + α2)−1

)
Q(λ2 + α2).

Estimates (9.7) show that for Imλ > c(α)

yα1Q(λ2)−1y−α1 : L2(M,dvolg)→ H2(M,dvolg).

In particular, for Imλ > c0,

Q(λ2)y−1
1 v = 0, v ∈ L2(M,dvolg) =⇒ v = 0. (9.8)

†This follows from standard integration by parts arguments: considering 〈Q(λ2)v, v〉 we first show

that for u ∈ C∞([0, 1)× ∂M)), ‖y1Dyk‖L2 ≤ C‖Q(λ2)v‖L2 +C‖u‖L2 . We then consider ‖Q(λ2)v‖2L2

and the form of ∆g in (9.3) shows that we control the H2 norm. Commuting y1Dyk with Q(λ2) gives

the general estimate.
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We now prove (9.5) and for that we first show that Dyku ∈ L2, k > 1. In fact,

Q(λ2)(Dyku) = Fk := Dykf − y2
1∂ykγy1Dy1u− y2

1[∆h, Dyk ]u ∈ L2,

where we used (9.6) which shows that u ∈ HN(M,dvolg) for any N . Now,

y1Dyk − y1Q(λ2)−1Fk ∈ L2, Q(λ2)y−1
1 (y1Dyk − y1Q(λ2)−1Fk) = 0.

Hence (9.8) shows that Dyku = Q(λ2)−1Fk ∈ L2. This argument can be iterated

showing (9.5). �
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