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1.1 Free Hamiltonian

We start with a systematic analysis of the simplest free scattering problem on R , namely,

when the quantum Hamiltonian is given by

H0 = D2
x = −∂2

x

where Dx = 1
i
∂x . Its eigenequation is

(H0 −λ2)u = 0 (1.1)

with general solution given by

u = Aeiλx +B e−iλx (1.2)

where A and B are arbitrary constants. Also, the Schrödinger equation{
(i∂t −H)v = 0

v|t=0 = v0

(1.3)

is solved by

v(t, x) =
1

(4πti)
1
2

∫
e−

(x−y)2
4ti v0(y)dy . (1.4)

In particular, when v0 = u where u as in (1.2), we have

v(t, x) = Aeiλx−iλx +B e−iλx−iλ
2x . (1.5)

Take λ > 0 and write the phase as

λ(x−λt) and λ(x+ λt) .

We can think of the first term in (1.5) as a wave moving to the right and the second term

as a wave moving to the left. Consequently, we call

Aeiλx for x < 0 , Be−iλx for x > 0

the incoming terms and

Aeiλx for x > 0 , Be−iλx for x < 0
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the outgoing terms.

eiλx −→ −→
−−−−− x

e−iλx ←− ←−

Figure 1

Hence, the solution e+(x, λ) := eiλx of (1.1) is incoming for x < 0 and outgoing for

x > 0. Similarly, the solution e−(x, λ) := e−iλx of (1.1) has the opposite property. We

call them plane waves. Clearly, there exists no solution of (1.1) with only incoming terms

or only outgoing terms for λ 6= 0. However, for λ = 0, the solution u ≡ 1 is considered

both incoming and outgoing. Although the physical intuition underlying our incoming and

outgoing convention makes sense only for λ > 0, we will take the same convention for all

λ ∈ C . Note that this amounts to a convention of taking the square root of the energy λ2 .

Next we consider the equation

(H0 −λ2)u = f for f ∈ C∞0 (R). (1.6)

It has a unique outgoing and a unique incoming solution given by

u±(x, λ) = ± i

2λ

∫
f(y) e±iλ|x−y| dy (1.7)

where the plus sign gives the outgoing solution and the minus sign gives the incoming one.

Note that the uniqueness follows from the fact that there is no incoming or outgoing solution

to the eigenequation (1.1) as mentioned above.

An alternative characterization of the outgoing or incoming solution u± of (1.6) is that

u+(x, λ) ∈ L2(R) for Imλ > 0

and

u−(x, λ) ∈ L2(R) for Imλ < 0.

Also, we have

u+(x, λ) = u−(x, λ) = u−(x,−λ). (1.8)

We can now define the outgoing resolvent of H0, R0(λ), by

u+ = R0(λ)f for f ∈ C∞0 (R) .
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and R0(−λ) is then defined to be the incoming resolvent which satisfies

u− = R0(−λ)f for f ∈ C∞0 (R) .

by (1.8). Note that (1.7) implies

R0(λ)(x, y) =
i

2λ
eiλ|x−y| . (1.9)

Clearly, the outgoing resolvent R0(λ) is bounded on L2(R) for Im λ > 0. Moreover, its

norm is given by

‖R0(λ)‖L2→L2 =
1

d(R+, λ2)
. (1.10)

where d(R+, λ
2) denotes the distance between λ2 and the positive real axis R+ . This follows

from standard facts in the spectral theory of self-adjoint operator. In our case, it can be

seen directly from the Plancherel Theorem. Indeed, for f ∈ C∞0 (R), we have

R0(λ)f = F−1

(
1

( · )2 −λ2
Ff
)

where F is the Fourier transform. Since

‖M 1
( · )2−λ2 ‖L2→L2

= sup
ξ∈R

1

ξ2 −λ2
=

1

d(R+, λ2)

with Mg(u) = gu denoting the multiplication operator, (1.10) follows.

Also, by (1.9), R0(λ) as an operator

R0(λ) : L2
comp(R)→ L2

loc(R)

has a meromorphic extension to λ ∈ C with a simple pole at λ = 0. In fact, we have

R0(λ) =
P

λ
+Q(λ)

with (Pf)(x) =
i

2

∫
R
f(y)dy for f ∈ L2

comp(R) and Q(λ) : L2
comp(R) → L2

loc(R) being

entire in λ ∈ C .

Formally, P = φ ⊗ φ̄ where φ(x) =
eπi/4√

2
can be regarded as an outgoing solution to

(1.1) at λ = 0.
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The spectral decomposition of H0 can be given by the Fourier transform as follows (here

we use the same symbol of the operator to denote its Schwartz kernel),

H0(x, y) = D2
x(x, y) =

1

2π

∫ ∞
−∞

λ2 eiλ(x−y) dy :=

∫ ∞
0

λ2dEλ(x, y) . (1.11)

Thus the spectral measure dEλ is given by

dEλ(x, y) =
1

2π
(eiλ(x−y) + e−iλ(x−y))dλ

=
1

2π
(e+(x, λ)e+(y, λ) + e−(x, λ)e−(y, λ))dλ (1.12)

=
λ

iπ
(R0(λ)−R0(−λ))(x, y)dλ

where the last equality follows from (1.9). Note that (1.12) is a special case of a general

result in functional analysis, namely the Stone’s Formula, and of the spectral decomposition

in terms of generalized eigenfunctions. To see this, we have to clarify the convention. Write

H0 =

∫ ∞
0

zdEz =

∫ ∞
0

λ2dEλ (z = λ2)

as usual (note that H0 is a nonnegative operator). Thus dEz = dEλ . In our incoming and

outgoing convention, for λ > 0, R0(λ) = R0(z + i0) and R0(−λ) = R0(z − i0). Hence the

usual Stone’s Formula,

dEz =
1

2πi
(R0(z + i0)−R0(z − i0))dz

coincides with our formula (1.12).

Next we mention the connection with the wave equation:

(D2
t −D2

x)U = f . (1.13)

It can be solved by using the advanced and retarded fundamental solutions E± which are

characterized uniquely by the following support property.

(D2
t −D2

x)E±(t, x, y) = δ0(t)δy(x)

E±(t, x, y) = 0 for ± t < 0
(1.14)

Indeed, we have

E±(t, x, y) =

{
1
2
±t > |x− y|

0 otherwise.
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Their relation with the outgoing and incoming resolvents R0(±λ) is then given by

E±(t, x, y) =
1

2π

∫
R0(±λ)(x, y)e−iλtdλ . (1.15)

Finally, we remark that our incoming and outgoing convention is motivated by the Schrödinger

equation and is different from the wave equation approach.

1.2 Perturbed Hamiltonian and Distorted Plane Waves

We now consider the perturbed Hamiltonian on R :

HV = D2
x + V for V ∈ L∞comp(R)

We would like to establish the same results we had for H0 in section 1.1.

We will first show the existence of the resolvent RV (λ) which satisfies, for f ∈ C∞0 (R),

(HV −λ2)RV (λ)f = f (1.16)

with RV (λ)f being outgoing. Here, the meaning of outgoing (or incoming) can be taken as

that of section 1.1 since RV (λ)f solves (1.1) for large x .

Theorem 1.1 The operator

RV (λ) : L2
comp(R)→ L2

loc(R)

satisfying (1.16) exists as a meromorphic function of operators for λ ∈ C and it has no pole

for λ ∈ R \ {0}.

Proof. For Im λ > 0, by applying the operator HV −λ2 to the free resolvent, we get

(D2
x + V −λ2)R0(λ) = I + V R0(λ) . (1.17)

By (1.10), we have

‖V R0(λ)‖L2→L2 << 1 for Im λ >> 0 .

Thus, for Im λ >> 0,

(I + V R0(λ))−1 =
∞∑
k=0

(−V R0(λ))k : L2(R)→ L2(R)

exists and is holomorphic in λ .
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For Im λ >> 0, let

RV (λ) = R0(λ)(I + V R0(λ))−1 . (1.18)

Clearly, RV (λ) is a holomorphic family of bounded operators on L2(R) which satisfies (1.16).

We need to show that as operators RV (λ) : L2
comp(R) → L2

loc(R), RV (λ) continues

meromorphically from Im λ >> 0 to the whole complex plane. This is the same as extending

RV (λ)ρ : L2(R)→ L2

loc(R)

meromorphically to C for any ρ ∈ C∞0 (R) where ρ denotes the corresponding multiplication

operator. Note that once the meromorphic continuation is established, it does not depend

on ρ in the following sense:

if ρ1 ∈ C∞0 (R) with ρ1 ≡ 1 on Supp ρ,
then we have (RV (λ)ρ1)ρ = RV (λ)ρ .

(1.19)

In fact, this is obviously true for Im λ >> 0, and then for λ ∈ C by meromorphic continu-

ation.

Next we observe that, for Im λ >> 0 and ρ ∈ C∞0 (R) with ρV ≡ V ,

RV (λ)ρ = R0(λ)ρ(I + V R0(λ)ρ)−1 (1.20)

by (1.18) and the equality

(I + V R0(λ))−1ρ = ρ(I + V R0(λ)ρ)−1 .

Hence, the meromorphic continuation of RV (λ) is reduced to that of (I + V R0(λ)ρ)−1 .

This in turn follows from the Analytic Fredholm Theory in the Appendix, once we note

that V R0(λ)ρ = V ρR0(λ)ρ is a meromorphic family of compact operators on L2(R) as

ρR0(λ)ρ : L2(R)→ H2
comp(R) for λ ∈ C\{0} is compact and V : L2(R)→ L2(R) bounded.

To complete the proof of Theorem 1.1 it remains to show that there is no pole for RV (λ)

on R\{0} . This will come in several steps. We start with

Proposition 1.1 If RV (λ) has a pole at λ = λ0 6= 0 and write

RV (λ) =
PN

(λ−λ0)N
+

PN−1

(λ−λ0)N−1
+ · · ·+ P1

λ−λ0

+Q(λ) (1.21)

for λ near λ0 where Q(λ) is holomorphic at λ0 , then u ∈ PN(L2
comp(R)) is an outgoing

solution of (HV −λ2
0)u = 0.
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Proof. First, note that the expansion (1.21) follows from meromorphy of RV (λ). Next,

by applying the operator (λ −λ0)N(HV −λ2) to RV (λ) and then putting λ = λ0 , we see

that

(HV −λ2
0)PN ≡ 0 .

It remains to show that elements in PN(L2
comp(R)) are always outgoing. For this, we let

ρ ∈ C∞0 (R) with ρV ≡ V . By (1.20), we can write

(I + V R0(λ)ρ))−1 =
P̃N

(λ−λ0)N
+ · · ·+ P̃1

λ−λ0

+ Q̃(λ)

for λ near λ0 where P̃j, Q̃(λ) : L2(R) → L2(R), j = 1, . . . N , and Q̃(λ) is holomorphic at

λ0 . Then (1.20) also implies that

PN(ρL2(R)) = R0(λ)ρP̃N(L2(R)) ⊂ R0(λ)(L2
comp(R))

which means that elements of PN(L2
comp(R)) are outgoing.

Next, we prove that there is no outgoing solution to (HV −λ2)u = 0 for λ ∈ R\{0} . This

follows from the following proposition.

Proposition 1.2 Suppose (HV −λ2)u = 0 for λ ∈ R\{0} and let

u(x) =

{
A+ e

iλx +B− e
−iλx for x >> 0

A− e
iλx +B+ e

−iλx for x << 0

Then

|A+|2 + |B+|2 = |A−|2 + |B−|2 (1.22)

Proof. Since λ is real, ū also satisfies the equation. Thus, the Wronskian of u and ū

W (u, ū) =

∣∣∣∣ u u′

ū ū′

∣∣∣∣ =

{
−2iλ(|A+|2 − |B−|2) for x >> 0

−2iλ(|A−|2 − |B+|2) for x << 0

is constant. (1.22) follows immediately.

Proposition 1.3 Suppose u ∈ L∞(R) satisfies (D2
x+W )u = 0 for W ∈ L∞(R) and supp

u ⊂ [0,∞). Then u ≡ 0.
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Proof. Fix h > 0. Let v = e−
x
hu . Then the boundedness and the support property of

u imply that v ∈ L2(R). Now we have

‖e−
x
h (hDx)

2e
x
hv‖L2 = ‖(h2D2

x − 2ihDx − 1)v‖L2

= ‖(hξ − i)2v̂‖L2 by Plancherel formula

≥ ‖v̂‖L2 since |hξ − i| ≥ 1 as hξ ∈ R
= ‖v‖L2 .

Changing back to u , we get

‖e−
x
hu‖L2 ≤ ‖e−

x
hh2D2

xu‖L2

= ‖e−
x
hh2Wu‖L2

≤ ‖W‖
L∞ h

2 ‖e−
x
hu‖L2 .

Taking h2 < ‖W‖−1
L∞

, we obtain e−
x
hu ≡ 0, i.e. u ≡ 0.

Now we can finish the proof of Theorem 1.1. In fact, assume that there is a pole of RV (λ)

at λ0 ∈ R\{0} . Proposition 1.1 implies that there is a nonzero outgoing solution u of the

equation (HV −λ2
0)u = 0. Proposition 1.2 then implies that u is vanishing outside some

compact set in R . But Proposition 1.4 says that u ≡ 0 which is a contradiction.

Remark. Proposition 1.2 is the only part of the proof of Theorem 1.1 which is simpler

in dimension 1, all the remaining parts work in higher dimensions.

With the construction of the resolvent RV (λ) in place, we can now define and obtain the

distorted plane waves which constitute the continuous spectrum of HV .

Proposition 1.4 For λ ∈ R\{0}, there exist unique solutions e±(x, λ) to

(HV −λ2
0)u = 0 (1.23)

satisfying e±(x, λ) = e±iλx + outgoing terms.

Proof. For λ ∈ R\{0} , put

e±(x, λ) = e±iλx −RV (λ)(V e±iλx) (1.24)

which makes sense because of Theorem 1.1. Clearly, e±(x, λ) satisfies the equation (1.23)

and the last term in (1.24) is outgoing thanks to (1.20). Uniqueness again follows from

nonexistence of outgoing solution to (1.23) proved in Theorem 1.1.
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To establish the analogue of (1.12), we use a standard ODE technique to represent RV (λ)

in terms of e±(x, λ). First, recall that, in general the fundamental solution of the ODE

(a∂2
x + b(x))E(x, y) = δy(x)

can be written in terms of any two linearly independent solutions ψj , j = 1, 2 of

(a∂2
x + b(x))ψj = 0 j = 1, 2 .

Namely,

E(x, y) =
1

aW
(ψ1(x)ψ2(y)(x− y)0

+ + ψ1(y)ψ2(x)(x− y)0
−) (1.25)

where W =

∣∣∣∣ ψ1 ψ′1
ψ2 ψ′2

∣∣∣∣ is the Wronskian of ψ1, ψ2 and

(x− y)0
± =

{
1 ±x > ±y
0 otherwise

denote the Heaviside functions.

We now apply (1.25) to the operator HV −λ2 for λ ∈ R\{0} and solutions ψ1 = e+ ,

ψ2 = e− . Note that, for fixed y , both e+(x, λ)(x − y)0
+ and e−(x, λ)(x − y)0

− are outgoing

and hence (1.25) gives us the outgoing resolvent.

To write down RV (λ)(x, y) explicitly, we need to compute the Wronskian of e+ and e− .

First, observe that, by the characterizing properties of e± , we can write

e±(x, λ) =

{
T±(λ)e±iλx for ± x >> 0

e±iλx +R±(λ)e∓iλx for ± x << 0
(1.26)

Computing the Wronskian W of e+ and e− for large x and large negative x respectively,

we get

W = −2iλT+(λ) = −2iλT−(λ) .

In particular,

T+(λ) = T−(λ) := T (λ) . (1.27)

e+(x, λ)
eiλx−→ R+(λ)e−iλx←− T (λ)eiλx−→
−−−−−| V | − − −−−−

e−(x, λ)
T (λ)e−iλx←− R−(λ)eiλx−→ e−iλx←−

−−−−−| V | − − −−−−
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Figure 2

T (λ) is called the transmission coefficient and R±(λ) the reflection coefficients. Now, we

can write down the expression for RV (λ) in terms of e± from (1.25). For λ ∈ R\{0} , we

have

RV (λ)(x, y) =
1

2iλT (λ)

(
e+(x, λ)e−(y, λ)(x− y)0

+ + e+(y, λ)e−(x, λ)(x− y)0
−
)
. (1.28)

This implies the following useful asymptotics

RV (λ)(±r, y) =
1

2iλ
e±iλr e∓(y, λ) for r >> 0 . (1.29)

The spectral decomposition of HV is now given by

Theorem 1.2 Let e± be given by Proposition 1.4. Then

δ(x− y) =
1

2π

∫ ∞
0

(
e+(x, λ)e+(y, λ) + e−(x, λ)e−(y, λ)

)
dλ+

N∑
j=1

ej(x)ej(y)

and

HV (x, y) =
1

2π

∫ ∞
0

λ2
(
e+(x, λ)e+(y, λ) + e−(x, λ)e−(y, λ)

)
dλ+

N∑
j=1

Ejej(x)ej(y)

(1.30)

where Ej = λ2
j , j = 1, . . . , N , λ′js are the poles of RV (λ) for Im λ > 0, and (HV −Ej)ej =

0 with ‖ej‖L2 = 1.

Proof. According to the Appendix, Theorem 1.1 and the boundedness of V , HV acting

on C∞0 (R) has a self-adjoint extension on L2(R) whose spectrum consists of finitely many

negative eigenvalues (with multiplicity) and a continuous part [0,∞). Hence

HV =
N∑
j=1

Ejej ⊗ ēj +

∫ ∞
0

zdEz =
N∑
j=1

Ejej ⊗ ēj +

∫ ∞
0

λ2dEλ (1.31)

where the Ej ’s are the eigenvalues of HV and the ej ’s are the corresponding normalized

eigenfunctions, i.e. (HV − Ej)ej = 0, ‖ej‖L2 = 1. (In the second equality, we use the

substitution z = λ2 .)

In our convention of taking square root of z , Ej = λ2
j where the λj ’s are the poles of

RV (λ) for Im λ > 0. To compute dEλ we use the Stone’s Formula

dEλ =
λ

πi
(RV (λ)−RV (−λ))dλ . (1.32)
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We want to express the right-hand side by the distorted plane waves e± . For this we use

(D2
x + V −λ2)RV (±λ)(x, y) = δ(x− y)

and the symmetry of RV (±λ)(x, y) with respect to x, y to write for fixed x, y and large r ,

(RV (λ)−RV (−λ))(x, y)

=

∫ r

−r
[RV (λ)(x, y′)(D2

y′RV (−λ)(y′, y))− (D2
y′RV (λ)(x, y′))RV (−λ)(y′, y)]dy′

= [RV (λ)(x, y′)Dy′RV (−λ)(y′, y)−Dy′RV (λ)(x, y′)RV (−λ)(y′, y)]|y
′=r
y′=−r

=
i

2λ
(e+(x, λ)e+(y, λ) + e−(x, λ)e−(y, λ) ) (1.33)

by (1.29). Theorem 1.2 now follows by putting (1.33) into (1.31) and (1.32).

As at the end of section 1.1, we can also consider the relation to the wave equation. The

advanced and retarded fundamental solutions E± are again characterized by

(D2
t − (D2

x + V ))E±(t, x, y) = δ0(t)δy(x)
E±(t, x, y) = 0 for ± t < 0 .

Again we have

E±(t, x, y) = − 1

2π

∫
RV (±λ)(x, y)e−itλdλ .

We have more or less established in the perturbed case all the results we proved in

section 1.1. We end this section by discussing a class of intertwining operators A± satisfying

HVA± = A±H0 which will be useful later. More precisely, we want to find distributions

A±(x, y) satisfying

(D2
x + V )A±(x, y) = D2

yA±(x, y)
A±(x, y) = δ(x− y) ± x >> 0 .

(1.34)

To show their existence, we will first construct solutions of the stationary equation, for

λ ∈ R ,
(D2

x + V −λ2)φ±(x, λ) = 0
φ±(x, λ) = e−iλx ± x >> 0 .

(1.35)

φ+(x, λ)
e−iλx←−

−−−−−| V | − − −−−−
e−iλx←−

φ−(x, λ) −−−−−| V | − − −−−−
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Figure 3

Lemma 1.1 There exist unique solutions φ±(x, λ) to (1.35) and for fixed x, φ±(x, λ) are

tempered functions in λ ∈ R.

Proof. Put

φ±(x, λ) =
1

T (∓λ)
e±(x,∓λ) (1.36)

where T (λ) is defined in (1.26) and (1.27). Then φ±(x, λ) are meromorphic in λ ∈ C .

We claim that φ±(x, λ) are holomorphic on R . Indeed, for λ ∈ R\{0} , T (λ) 6= 0

otherwise e±(x, λ) would be identically zero by Proposition 1.3. Next, suppose φ±(x, λ) has

a pole of order m > 0 at λ = 0. Then λmφ±(x, λ) is holomorphic for λ near 0. Let

φ̃±(x) = lim
λ→0

λmφ±(x, λ) ,

then φ̃±(x) is a solution of

(D2
x + V )φ̃±(x) = 0

φ̃±(x) = 0 ± x >> 0 .

Hence φ̃±(x) ≡ 0 by Proposition 1.3 which is a contradiction. Although we don’t need this

fact in the proof of the Lemma, we remark that the above argument actually shows that

φ±(x, λ) is defined and holomorphic for λ ∈ C . As φ±(x, λ) clearly satisfy (1.35), it remains

to verify the temperedness of φ±(x, λ) as |λ| → ∞ . For that, recall by (1.9),

|(V R0(λ)ρ)(x, y)| ≤ 1

|λ|
for |λ| >> 0

where ρ ∈ C∞0 (R) with ρV ≡ V ; also from (1.20) we have

RV (λ)ρ = R0(λ)ρ
∞∑
k=0

(R0(λ)V )k .

(1.29) then shows that

|e±(x, λ)| ≤ C for |λ| >> 0 . (1.37)

Moreover, we have

|T (λ)|−1 ≤ C for |λ| >> 0 .

This follows from a similar argument as

T (λ) = 1− e−iλxRV (λ)(V eiλ ·) for |λ| >> 0

12



which implies

T (λ) = 1 +O

(
1

|λ|

)
as |λ| → ∞ . (1.38)

This completes the proof of our lemma.

Proposition 1.5 There exist unique solutions A±(x, y) to (1.34). Moreover, they satisfy

the following properties:

(a) Supp A±(x, y) ⊂ {(x, y) ∈ R2 : ∓x ≥ ∓y}
(b) δyA−(x, y) = X(y − x) + Y (x+ y) x >> 0.

Here X, Y are distributions with compact support with

supp X ⊂ [−2(b− a), 0]
supp Y ⊂ [2a, 2b]

(1.39)

where [a, b] = ch supp V .

Proof. Rewriting (1.34) slightly, we have{
D2
x − (D2

y − V (x))A±(x, y) = 0

A±(x, y) = δ(x− y) for ± x >> 0

Thus A±(x, y) satisfies the wave equation with x taking the place of time (this choice is

dictated by the forcing condition imposed). The uniqueness part then follows from the energy

estimates of the wave equation proved in the Appendix.

For the existence part, we put

A±(x, y) =
1

2π

∫ ∞
−∞

φ±(x, λ)eiλydλ , (1.40)

which is well defined, thanks to Lemma 1.1.

Now A±(x, y) satisfies (1.34) because of (1.35). (a) is then a direct consequence of the

energy estimates, that ∂yA−(x, y) is of the form given in (b) for x >> 0 is simply because

it satisfies the wave equation there:

(D2
x −D2

y)∂yA−(x, y) = 0 forx >> 0.

The support properties of X and Y can now be seen from Figure 4 which shows the support

of ∂yA−(x, y) (the region enclosed by the thick lines) and with the supports of X(y − x)

and Y (y + x) indicated.
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Figure 4

Remark. A direct construction of the intertwining kernels A±(x, y) is important in

inverse problems.
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1.3 Scattering Matrix and Wave Operators

We start with the definition of the scattering matrix associated to the Hamiltonian

HV = D2
x + V V ∈ L∞comp(R)

in section 1.2. For any solution u of

(D2
x + V −λ2)u = 0 , (1.41)

it has the expansion

u(x, λ) =

{
A+ e

iλx +B− e
−iλx for x >> 0

A− e
iλx +B+ e

−iλx for x << 0 .
(1.42)

B+ e−iλx←− A− eiλx−→ B− e−iλx←− A+ eiλx−→
u(x, λ) −−−−−| V | − − −−−

Figure 5

Then the scattering matrix is defined to be the operator which maps the incoming coef-

ficients to the outgoing coefficients, i.e. S(λ) : C2 → C2 .(
A−
B−

)
7→
(
A+

B+

)
(1.43)

Theorem 1.3 The matrix S(λ) is meromorphic for λ ∈ C where poles with Im λ > 0

correspond to the square roots of the eigenvalues of HV . In the notation of Proposition 1.5

we have

S(λ) =


iλ

X̂(λ)

Ŷ (λ)

X̂(λ)

Ŷ (−λ)

X̂(λ)

iλ

X̂(λ)

 (1.44)

where X̂ denotes the Fourier transform of X and

S(λ)S(λ̄)∗ = S(λ)JS(−λ)J = I with J =

(
0 1
1 0

)
(1.45)

Proof. To find S(λ), we use the two linearly independent solutions φ±(x, λ) of (1.41)

given by Lemma 1.1. Write

φ−(x, λ) =

{
A(λ)eiλx +B(λ)e−iλx for x >> 0

e−iλx for x << 0
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and

φ+(x, λ) =

{
e−iλx for x >> 0

C(λ)eiλx +D(λ)e−iλx for x << 0

where A(λ), . . . , D(λ) satisfy

A(λ) = A(−λ), . . . , D(λ) = D(−λ) (1.46)

and the unitarity conditions

|A(λ)|2 + 1 = |B(λ)|2, |C(λ)|2 + 1 = |D(λ)|2 . (1.47)

The definition (1.43) of the scattering matrix gives

S(λ) =


−A(λ)

B(λ)C(λ)
A(λ)
B(λ)

B(λ)D(λ)−1
C(λ)B(λ)

1
B(λ)

 (1.48)

From (1.40) and Proposition 1.5(b), we find, for λ ∈ R ,

iλφ−(x, λ) = X̂(λ)φ+(x, λ) + Ŷ φ+(x,−λ) . (1.49)

Using (1.49) we can express A(λ), . . . , D(λ) in terms of X̂(λ) and Ŷ (λ). A simple calculation

gives

A(λ) =
Ŷ (λ)

iλ
, B(λ) =

X̂(λ)

iλ
, C(λ) =

−Ŷ (λ)

iλ
, D(λ) =

−Ŷ (λ)

iλ
. (1.50)

In the calculation, we have used the fact that X and Y are real and the unitarity condition

|A(λ)|2 + 1 = |B(λ)|2 which implies

X̂(λ)X̂(−λ) = λ2 + Ŷ (λ)Ŷ (−λ) . (1.51)

Putting (1.50) into (1.48) we get (1.44). In particular, S(λ) is meromorphic on C as both

X and Y are compactly supported distributions. Suppose S(λ) has a pole at λ0 where Im

λ0 > 0, then X̂(λ) has a zero at λ0 , thus B(λ) has a zero at λ0 and φ−(x, λ0) becomes an

eigenfunction of (1.41), i.e., λ0 is a square root of the eigenvalues of HV . Finally, relations

(1.45) can be checked directly by using (1.44) and (1.51).

The scattering matrix S(λ) also relates the incoming and outgoing distorted plane waves

e±(x, λ), defined in Proposition 1.4.
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Proposition 1.6 We have the following “functional equations” for the distorted plane waves

e±(x, λ)

S(λ)tJ

(
e+(x,−λ)
e−(x,−λ)

)
=

(
e+(x, λ)
e−(x, λ)

)
where J =

(
0 1
1 0

)
(1.52)

Proof. We first recall the relations between φ± and e± from (1.36)

φ+(x,−λ) = 1
T (λ)

e+(x, λ) = X̂(λ)
iλ

e+(x, λ)

φ−(x, λ) = 1
T (λ)

e−(x, λ) = X̂(λ)
iλ

e−(x, λ)
(1.53)

where we have used

T (λ) =
iλ

X̂(λ)
(1.54)

which can be obtained, for example, by comparing e−(x, λ) and φ−(x, λ) for x >> 0 and

(1.50). For later use, we also record

R±(λ) =
Ŷ (∓λ)

X̂(λ)
(1.55)

which by (1.44) implies that

S(λ) =

(
T (λ) R−(λ)
R+(λ) T (λ)

)
. (1.56)

Now, putting (1.53) into (1.49) we obtain

iλe−(x, λ) = −X̂(−λ)e+(x,−λ) + Ŷ (λ)e+(x, λ) . (1.57)

Then, we compute

S(λ)tJ

(
e+(x,−λ)
e−(x,−λ)

)
=

1

X̂(λ)

(
iλ Ŷ (−λ)

Ŷ (λ) iλ

)(
e−(x,−λ)
e+(x,−λ)

)
=

1

X̂(λ)

(
iλe−(x,−λ) + Ŷ (−λ)e+(x,−λ)

Ŷ (λ)e−(x,−λ) + iλe+(x,−λ)

)
=

(
e+(x, λ)
e−(x, λ)

)
where we have used (1.57) in the last equality.

Our notion of incoming and outgoing behavior was motivated by the Schrödinger equation

(see section 1.1) while the above definition of the scattering matrix is purely stationary. Now,
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we would like to connect it back to the dynamical point of view. Recall that if H is a self-

adjoint operator, then the initial value problem{
(i∂t −H)v = 0

v|t=0 = u
(1.58)

is solved by the 1-parameter unitary group e−itH , i.e.,

v(t) = e−itH u .

We want to compare the free and perturbed evolutions corresponding to the self-adjoint

operators H0 and HV respectively. First, we want to show that for any initial data u ∈ L2(R)

orthogonal to the space of eigenfunctions of HV , there exist u± ∈ L2(R) such that

e−itHV u ≈ e−itH0 u± as t→ ±∞ .

This is given by the following classical theorem whose proof does not depend on the space

dimension. Hence, we present the general case in our simple setting for V ∈ L2
comp(Rn).

Theorem 1.4 Let HV = −∆ + V , where V ∈ L2
comp(Rn). If u ∈ L2(Rn), the following

limits exist

W±u = lim
t→+∞

eitHV e−itH0 u (1.59)

Also, we have

W±H0 = HVW± (1.60)

and

‖W±u‖L2 = ‖u‖L2 , (1.61)

i.e., W± are partial isometries intertwining the operators H0 and HV .

Proof. We first prove the existence of W± . Let

U(t) = eitHV e−itH0 .

Since eitHV and e−itH0 are unitary operators on L2(Rn) which follows from the spectral

theorem of self-adjoint operators, U(t) is also unitary, i.e.,

‖U(t)w‖L2(Rn) = ‖w‖L2(Rn) for any w ∈ L2(Rn).
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Hence by a standard density argument, it suffices to prove the existence of limits in (1.59)

for u in a dense subset of L2(Rn). We take

D = {u ∈ L2(Rn) : û ∈ C∞0 (Rn\{0})} .

D is dense in L2(Rn) because C∞0 (Rn\{0}) is dense in L2(Rn) and Fourier Transform is

unitary on L2(Rn). Now, for u ∈ L2(Rn),

d

dt
(eitHV e−itH0 u) = ieitHV (HV −H0)e−itH0u

= ieitHV V e−itH0u

Thus

U(s)u = u+ i

∫ s

0

eitHV V e−itH0u dt

and W± exist if∫
‖eitHV V e−itH0u‖L2(Rn) dt =

∫
‖V e−itH0u‖L2(Rn) dt <∞ (1.62)

for all u ∈ D .

Take u ∈ D , then there exists 0 < r < R such that for ξ ∈ supp û , we have r < |ξ| < R .

Let ut(x) = (e−itH0u)(x), then (1.62) follows if for some constant C which may depend on

u , we have

|ut(x)| ≤ C

|t|2
(1.63)

for x ∈ supp V and for t sufficiently large. To see this, we apply integration by parts to

ut(x) = e−itH0u(x) =
1

2π

∫
r<|ξ|<R

eix·ξ−it|ξ|
2

û(ξ)dξ

=
1

2π

∫
r<|ξ|<R

(
1

i(xj − 2tξj)
∂ξj

)2

eix·ξ−it|ξ|
2

û(ξ)dξ

=
1

2π

∫
r<|ξ|<R

eix·ξ−it|ξ|
2

(
∂ξj

(
1

i(xj − 2tξj)

))2

û(ξ)dξ .

We obtain (1.63) if we observe that, as r < |ξ| < R ,∣∣∣∣ 1

xj − 2tξj

∣∣∣∣ ≤ C

|t|
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for x in some compact set and t sufficiently large. As we have proved the existence of W± ,

(1.61) is clear as they are strong limits of unitary operators.

Finally, (1.60) can be seen as follows. For any s ∈ R ,

eisHVW± e
−isH0 = lim

t→±∞
ei(s+t)HV e−i(s+t)H0 = W±

Thus,

0 =
1

i
∂s
(
eisHVW± e

−isH0
)

= HVW± −W±H0

which is (1.60).

The operators W± defined in Theorem 1.4 are called wave operators. They can be

defined in situations with greater generality. To illustrate this, we present the following

simple example.

Example. Let H0 = Dx , HV = Dx +V , V ∈ C∞0 (R). Then eitH0u(x) = u(x+ t) and

since HV = e−iFH0e
iF where F ′ = V , we have

eitHV u(x) = e−iF eitH0 eiFu(x)

= e−iF (x) eiF (x+t) u(x+ t)

Thus,

W±u(x) = lim
t→±∞

eitHV e−itH0 u(x)

= lim
t→±∞

e−iF (x) eiF (x) eiF (x+t) u(x)

= ei(F (±∞)−F (x)) u(x)

Now, using the same wave operators, we can define the scattering operator by

S = W ∗
+W− (1.64)

In our simple example above, S is simply the multiplication operator by the constant

e−i
R

R V (x)dx .

The following theorem relates the scattering operator to the scattering matrix defined in

(1.43).

Theorem 1.5 The scattering operator S : L2(R) → L2(R) is unitary and is given by the

Fourier multiplier

S = Φ∗S(·)Φ (1.65)
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where Φ : L2(R)→ (L2([0,∞))2 is defined by

Φ(u) =

(
û(·)
û(−·)

)
(1.66)

Proof. We first prove (1.65). Take any v ∈ C∞0 (R), let u = (Φ∗S(·)Φ)v . Thus(
û(λ)
û(−λ)

)
= S(λ)

(
v̂(λ)
v̂(−λ)

)
(1.67)

and u ∈ S(R). We need to prove Sv = u or equivalently W+u = W−v . Let

w(x) =
1

2π

∫ ∞
0

[
e+(x, λ)v̂(λ) + e−(x, λ)v̂(−λ)

]
dλ . (1.68)

We claim that

W−v = w . (1.69)

Indeed, we have

e−itHV w(x) =
1

2π

∫ ∞
0

[e+(x, λ)v̂(λ) + e−(x, λ)v̂(−λ)] e−itλ
2

dλ

= e−itH0 v(x) +
1

2π

∫ ∞
0

[f+(x, λ)v̂(λ) + f−(x, λ)v̂(−λ)] e−itλ
2

dλ

where f±(x, λ) = e±(x, λ) − e±iλx = −RV (λ)(V e±iλx) are outgoing and holomorphic in

{λ ∈ C : Re λ > 0, Im λ > 0} as shown in Proposition 1.4. Now, deforming the contour

of integration in the last integral from R+ to Γ+ = {µ + iµ : µ > 0} , we see that the last

integral tends to 0 in L2(R) as t→ −∞ once we observe the bounds

‖f±(· , λ)‖L2 ≤ C eCIm λ , |v̂(±λ)| ≤ C eCIm λ (1.70)

on Γ+ . The first estimate comes from the bound

‖RV (λ)‖L2→L2 ≤ 1

Im2(λ)
on Γ+

by the Spectral Theorem and the second estimate comes from the fact that v is compactly

supported. Thus, our claim is proved.

Next, we let

w̃(x) =
1

2π

∫ ∞
0

[e+(x,−λ)û(−λ) + e−(x,−λ)û(λ)]dλ (1.71)
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and we can prove by similar argument that

W+u = w̃ .

Note that the sign switch comes from the fact that e±(x,−λ)− e∓iλx is incoming and hence

we have to deform the contour of integration into the lower half plane. we also remark

that although the second estimate in (1.70) may not hold for u which is only known to be

Schwartz a priori, (1.71) can still be obtained by an approximation argument.

(1.65) will follow if we can prove w̃ = w . Now

w̃(x) =
1

2π

∫ ∞
0

(e+(x,−λ), e−(x,−λ))

(
û(−λ)
û(λ)

)
dλ

=
1

2π

∫ ∞
0

(e+(x, λ), e−(x, λ))S(λ)−1J

(
û(−λ)
û(λ)

)
dλ by (1.52)

=
1

2π

∫ ∞
0

(e+(x, λ), e−(x, λ))

(
v̂(λ)
v̂(−λ)

)
dλ by (1.67)

= w(x) .

Finally, the unitarity of S follows from (1.65) and the unitarity of S(λ) and Φ.

Remark. A different proof not specific to dimension 1 will be given in Chapter 2. In

the more general context, the multiplier we used is related to the spectral decomposition of

the free Laplacian in section 1.1, namely,

dE0
λ = Φ∗0(λ)Φ0(λ)dλ

with

Φ0(λ)u = (û(λ), û(−λ)) .

Since S commutes with H0 = D2
x , we have formally

S =

∫ ∞
0

S(λ)dE0
λ and S = Φ∗0 S(·)Φ0 .

As an application, we give the weak asymptotic completeness of the wave operators.

Proposition 1.7 We have Ran W+ = Ran W− .

Proof. This is a consequence of the unitarity of S and can be seen clearly from the

following diagram.
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Figure 6

Take any x ∈ Ran W+ , the existence and uniqueness of x̃ is clear from Figure 6. Now

we have

W+W
∗
+x̃ = x

which implies x̃ = x since W+ is a partial isometry. Thus Ran W+ ⊂ Ran W− . Similarly,

by considering S∗S = I instead of SS∗ = I , we get Ran W− ⊂ Ran W+ .

In fact, the range of W+ (or W− ) is characterized as the orthogonal complement of the

eigenfunctions of HV . More precisely,

Proposition 1.8 We have

(Ran W±)⊥ = Ker W ∗
± = Span {φ−(x, i

√
−Ek)} (1.72)

where the Ek ’s are eigenvalues of HV .

Proof. The fact that φ−(x, i
√
−Ek) gives an eigenfunction corresponding to the eigen-

value Ek is explained in the proof of Theorem 1.3. Note that all the eigenvalues of HV are

simple because of the uniqueness theorem of ordinary differential equation, see Proposition

1.3.

The first equality in (1.72) is a standard fact, we only need to prove the second equality

there.
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First, we show Span{φ−(x, i
√
−Ek)} ⊂ (Ran W±)⊥ . Of course, we only need to show it

for Ran W− in view of Proposition 1.7. For this, it suffices to check 〈w(x), φ−(x, i
√
−Ek)〉 =

0 for all w(x) of the form

w(x) =
1

2π

∫ ∞
0

[e+(x, λ)v̂(λ) + e−(x, λ)v̂(−λ)]dλ v ∈ C∞0 (R) ,

see (1.68),(1.69). This in turn follows from, for λ > 0

〈e±(x, λ)φ−(x, i
√
−Ek)〉 =

1

Ek
〈e±(x, λ), HV φ−(x, i

√
−Ek)〉

=
1

Ek
〈HV e±(x, λ), φ−(x, i

√
−Ek)〉

=
λ2

Ek
〈e±(x, λ), φ−(x, i

√
−Ek)〉

implying 〈e±(x, λ), φ−(x, i
√
−Ek)〉 = 0 as λ2

Ek
6= 1. It remains to show (Ran W−)⊥ ⊂

Span{φ−(x, i
√
−Ek)} or equivalently (Span{φ−(x, i

√
−Ek})⊥ ⊂ Ran W− . By the spectral

decomposition of HV , Theorem 1.2, a generic element of (Span{φ−(x, i
√
−Ek})⊥ is of the

form

w̃(x) =
1

2π

∫ ∞
0

[e+(x, λ)f̃+(λ) + e−(x, λ)f̃−(λ)] dλ

where

f̃±(λ) =

∫ ∞
−∞

e±(y, λ)f(y)dy , f ∈ C∞0 (R) .

Note that f̃±(λ) ∈ L2(R+) as e±(y, λ) is uniformly bounded by (1.37). We can then find

g ∈ L2(R) such that ĝ(λ) = f̃+(λ) and ĝ(−λ) = f̃−(λ) for λ > 0. Thus w̃(x) ∈ Ran W−
and this completes the proof of Proposition 1.8.

1.4 Resonances

We have seen in Theorem 1.2 that the poles of the outgoing resolvent RV (λ) in the upper

half plane {Im λ > 0} corresponds to the eigenvalues of HV . In Theorem 1.1, we saw that

RV (λ) as operator

RV (λ) : L2
comp(R)→ L2

loc(R)

has a meromorphic continuation to C . Its poles are some most important objects in scatter-

ing theory and are called resonances or scattering poles. We will provide more motivation

and justification later. We start with some preliminaries on multiplicity.

24



Proposition 1.9 If the multiplicity of a pole λ0 6= 0 of RV (λ) is defined by

mR(λ0) = rank
1

2πi

∮
λ0

RV (λ)dλ , (1.73)

then

mR(λ0) =
1

2πi

∮
X̂ ′(λ)

X̂(λ)
dλ

= the order of vanishing of X̂(λ) at λ0 (1.74)

where X ∈ E ′(R) is defined in Proposition 1.5.

Proof. Recall that φ±(x, λ) are a pair of linearly independent solutions to (HV−λ2)u = 0

defined in Lemma 1.1.

Apply (1.25) to the operator HV −λ2 and use ψ1 = φ+(x,−λ) and ψ2 = φ−(x,−λ), we

get

RV (λ)(x, y) =
1

2X̂(λ)
(φ+(x,−λ)φ−(x,λ)(x− y)0

+ + φ+(y,−λ)φ−(x, λ)(x− y)0
−) . (1.75)

Using (1.49), namely

iλφ+(x, λ) = X̂(λ)φ+(x, λ) + Ŷ (λ)φ+(x,−λ)

we obtain from (1.75) and (1.73) that

mR(λ0) = rank Resλ0

(
Ŷ (λ)

2iλX̂(λ)
φ+(·,−λ)⊗ φ+(·, λ)

)
.

Now suppose the order of vanishing for X̂(λ) at λ0 is k + 1, then the residue of

Ŷ (λ)

2iλX̂(λ)
φ+(·,−λ)⊗ φ+(·, λ)

at λ0 is given by, as Ŷ (·) and φ+(x, ·) are entire,

1

2ik!
∂kλ

(
Ŷ (λ)

λ
φ+(·,−λ)⊗ φ+(·, λ)

)∣∣∣∣∣
λ=λ0

=

[
k∑
`=0

∂`λφ+(·,−λ)⊗

( ∑
j1,j2≥0,j1+j2+`=k

cj1,j2,`∂
j1
λ

(
Ŷ (λ)

λ

)
∂j2λ φ+(·,−λ)

)]
λ=λ0

for some nonzero constants cj1,j2,` . The above operator is of rank k + 1 because
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(i) ∂jλφ+(x,−λ)|λ=λ0 , j = 0, 1, 2, . . . k , are linearly independent functions in x

since ∂jλφ+(x,−λ)|λ=λ0 = (ix)j eiλ0x for x >> 0

and

(ii) the coefficient of ∂jλφ+(x,−λ)|λ=λ0 , j = 0, . . . k , since Ŷ (λ0) 6= 0 by the

unitarity relation (1.51).

This finishes the proof of Proposition 1.9.

Theorem 1.3 shows that the poles of the resolvent coincides with the poles of the scattering

matrix. For matrix-valued meromorphic function (or more generally, for operator valued

meromorphic function), the natural notion of multiplicity of poles is given by

mS(λ0) = − 1

2πi

∮
λ0

tr(S(λ)−1S ′(λ))dλ (1.76)

which is the same as the order of the poles of det S(λ) because

(det S(λ))′

det S(λ)
= tr(S(λ)−1S ′(λ)) . (1.77)

Proposition 1.10 The definition of multiplicities given by (1.73) and (1.76) are related by

mS(λ) = mR(λ)−mR(−λ) (1.78)

Proof. Using (1.44), we compute

det S(λ) =
−X(−λ)

X̂(λ)
(1.79)

Proposition 1.10 then follows from Proposition 1.9.

Remark. If Im λ < 0, mR(λ) 6= 0 only for λ2 being an eigenvalue of HV . With a slight

abuse of terminology, we say that the poles of S(λ) and RV (λ) coincide with multiplicities.

We will now give some motivations for the study of resonances. We start with the time

delay operator. For simplicity, write χr(x) = 11{|x|<r} . For f ∈ C∞0 (R), put

Sr(f) =

∫ ∞
−∞
‖χr e−itHV W−f‖2 dt

and

S0
r (f) =

∫ ∞
−∞
‖χr e−itH0 f‖2 dt
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where W− is one of the wave operators studied in section 1.3.

Define an operator T̃r by its corresponding quadratic form

〈T̃rf, f〉 = Sr(f)− S0
r (f) ,

then the time delay operator T̃ is given by

〈T̃ f, f〉 = lim
r→∞
〈T̃rf, f〉 . (1.80)

The next proposition guarantees the existence of the limit. Here we note that, by definition

of W− ,

e−itHV W−f ∼ e−itH0 f as t→ −∞ .

Hence W−f and f evolve the same way under the perturbed and free propagation respec-

tively for large negative times.

Proposition 1.11 (Eisenbud-Wigner Formula) The operator T̃ given by (1.80) exists and

T̃ = Φ∗T (·)Φ (1.81)

where T (λ) = −2λiS(λ)∗ d
dλ
S(λ) and Φ is as in Theorem 1.5.

Outline of proof. (1.81) is equivalent to, for f ∈ C∞0 (R)( ̂̃Tf(λ)̂̃Tf(−λ)

)
= −2iλS(λ)∗S ′(λ)

(
f̂(λ)

f̂(−λ)

)
(1.82)

which in turn is equivalent to

〈T̃ f, f〉 =

∫ ∞
−∞

(T̃ f)(x)f̄(x)dx

=
1

2π

∫ ∞
−∞

̂̃Tf(λ)f̂(λ) dλ by Plancherel formula

=
1

2π

∫ ∞
−∞

(̂̃Tf(λ)f̂(λ) + ̂̃Tf(−λ)f̂(−λ))dλ (1.83)

=
1

2π

∫ ∞
−∞

(f̂(λ), f̂(−λ))

( ̂̃Tf(λ)̂̃Tf(−λ)

)
dλ

=
1

2π

∫ ∞
−∞

(f̂(λ), f̂(−λ))(−2iλS(λ)∗S ′(λ))

(
f̂(λ)

f̂(−λ)

)
dλ
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for f ∈ C∞0 (R). Now, using the expression of S(λ) in terms of the transmission and reflection

coefficients given in (1.56), we get

S(λ)∗S ′(λ) =

(
T (−λ)T ′(λ) +R+(−λ)R′+(λ) T (−λ)R′−(λ) +R+(−λ)T ′(λ)
R−(−λ)T ′(λ) + T (−λ)R′+(λ) R−(−λ)R′−(λ) + T (−λ)T ′(λ)

)
:=

(
a b
c d

)
(1.84)

Thus, we need to prove that lim
r→∞

(Sr(f)− S0
r (f)) exists and

lim
r→∞

(Sr(f)− S0
r (f)) (1.85)

=
1

2π

∫ ∞
0

(−2iλ)

[
af̂(λ)f̂(λ) + df̂(−λ)f̂(−λ) + bf̂(−λ)f̂(λ) + cf̂(λ)f̂(−λ)

]
dλ .

To compute Sr(f)− S0
r (f), we use the formula for W− given by (1.68) (and (1.69)), we get

Sr(f) =

∫ ∞
−∞
‖χr e−itHVW−f‖2dt

=

∫ ∞
−∞
‖χrW−e−itH0f‖2dt

=

(
1

2π

)2 ∫ ∞
−∞

∫ r

−r
|
∫ ∞

0

(e+(x, ξ)ê−itH0f(ξ) + e−(x, ξ)ê−itH0f(−ξ))dξ|2 dxdt

by (1.68)

=

(
1

2π

)2 ∫ ∞
−∞

∫ r

−r
|
∫ ∞

0

e−itξ
2

(e+(x, ξ)f̂(ξ) + e−(x, ξ)f̂(−ξ))dξ|2 dxdt

=

(
1

2π

)3 ∫ r

−r

∫ ∞
−∞
|
∫ ∞

0

Ft7→µ(e−itξ
2

(e+(x, ξ)f̂(ξ) + e−(x, ξ)f̂(−ξ))dξ|2 dµdx

by Plancherel formula

=
1

2π

∫ r

−r

∫ ∞
−∞
|
∫ ∞

0

δ0(µ+ ξ2)(e+(x, ξ)f̂(ξ) + e−(x, ξ)f̂(−ξ))dξ|2 dµdx

=
1

2π

∫ r

−r

∫ ∞
0

|e+(x,
√
µ)f̂(
√
µ) + e−(x,

√
µ)f̂(−√µ)|2dµdx

=
1

2π

∫ r

−r

∫ ∞
0

2λ|e+(x, λ)f̂(λ) + e−(x, λ)f̂(−λ)|2dλdx

=
1

2π

∫ ∞
0

∫ r

−r
2λ(e+(x, λ)e+(x,−λ)f̂(λ)f̂(λ) + e−(x, λ)e−(x,−λ)f̂(−λ)f̂(−λ)

+e−(x, λ)e+(x,−λ)f̂(−λ)f̂(λ) + e+(x, λ)e−(x,−λ)f̂(λ)f̂(−λ))dxdλ (1.86)
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Similarly, we have

S0
r (f) =

∫ ∞
−∞
‖χr e−itH0f‖2dt (1.87)

=
1

2π

∫ ∞
0

∫ r

−r
2λ(f̂(λ)f̂(λ) + f̂(−λ)f̂(−λ) + e−iλxf̂(−λ)f̂(λ) + eiλxf̂(λ)f̂(−λ))dxdλ

Thus, to prove (1.85), we need

lim
r→∞

∫ ∞
0

∫ r

−r
2λ(e±(x, λ)e±(x,−λ)− 1)dx f̂(±λ)f̂(±λ)dλ

=

∫ ∞
0

(−2iλ)[T (−λ)T ′(λ) +R±(−λ)R′±(−λ)]f̂(±λ)f̂(±λ)dλ

and

lim
r→∞

∫ ∞
0

∫ r

−r
2λ(e±(x, λ)e∓(x,−λ)− e±iλx)dx f̂(±λ)f̂(∓λ)dλ

=

∫ ∞
0

(−2iλ)[T (−λ)R′±(λ) +R∓(−λ)T ′(λ)]f̂(±λ)f̂(∓λ)dλ

These can be proved by exactly the same type of computation as we prove the Birman Krein

formula in section 1.5. Since we are going to give a detailed exposition there, we will not

carry out the computation here. Indeed, the first equality above follows directly from the

computation there.

This finishes our outline of the proof of Proposition 1.11.

Another motivation for the study of resonances is the fact that in a weaker sense, reso-

nances replace eigenvalues in expansion with modes (eigenfunctions). We recall that if we

have HV = D2
x + V on [a, b] with Dirichlet (or Neumann) boundary condition, then the

problem {
(HV −λ2)u = 0 on (a, b)

u(a) = u(b) = 0

has a distinct set of solutions (i
√
−Ek, vk), (λj, uj) with EN < · · · < E1 < 0 < λ2

0 < λ2
1 <

· · · → ∞ ,
∫ b
a
|uj|2dx =

∫ b
a
|vk|2dx = 1. If we consider the wave equation

(D2
t −HV )w = 0 on R× (a, b)

w(0, x) = w0(x) on [a, b]

∂tw(0, x) = w1(x) on [a, b]

w(t, a) = w(t, b) = 0 on R,
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then

w(t, x) =
N∑
k=1

cosh(t
√
−Ek)akvk(x) +

N∑
k=1

sinh(t
√
−Ek)bkvk(x)

+
∞∑
j=0

cos(tλj)cjuj(x) +
∞∑
j=0

sin(tλj)djuj(x) (1.88)

where

ak =

∫ b

a

w0(x)v̄k(x)dx , bk =

∫ b

a

w1(x)v̄k(x)dx ,

cj =

∫ b

a

w0(x)ūj(x)dx , dj =

∫ b

a

w1(x)ūj(x)dx .

We now give an analogue of (1.88) for problems on open domains involving resonances. In

its proof we need the following

Lemma 1.2 Suppose V ∈ L∞comp(R). Then for any ρ ∈ C∞0 (R) satisfying ρV = V , there

are constants A′, C, T depending on the support of ρ such that

‖ρRV (λ)ρ‖L2→L2 ≤ C

|λ|
eT |Imλ| (1.89)

for Imλ ≥ −A′ − δ log〈λ〉 and λ sufficiently large. Here δ is a constant depending only on

the support of V . In particular there are only finitely many resonances in the region

{Imλ ≥ −A−log〈λ〉}

for any A.

Proof. First, note the following obvious estimate of the free resolvent

‖ρR0(λ)ρ‖L2→L2 ≤ 1

|λ|
eT |Imλ| (1.90)

for some constant T depending on the support of ρ , see (1.9). Since we have, from (1.20),

ρRV (λ)ρ = ρR0(λ)ρ(I + V R0(λ)ρ1)−1

where ρ1 ∈ C∞0 (R) is any function satisfying ρρ1 = ρ1 , (1.89) holds in the region where

‖V R0(λ)ρ1‖L2→L2 ≤ 1
2
.
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Our lemma clearly follows from (1.90). Note that the constant δ does not depend on ρ as

we can choose ρ1 with support as close to that of V as we like.

Remark. Here, we draw a consequence of Lemma 1.2. Since

(D2
x + V −λ2)ρRV (λ)ρ = ρ2I + [D2

x, ρ]RV (λ)ρ

we have

D2
x(ρRV (λ)ρ) = ρ2I + (D2

xρ+ 2Dxρ ·Dx)RV (λ)ρ− V ρRV (λ)ρ+ λ2ρRV (λ)) .

Thus

‖ρRV (λ)ρ‖L2→H2 ≤ C‖D2
xρRV (λ)ρ‖L2→L2

≤ C

(
1 + ‖ρ1RV (λ)ρ‖L2→L2 + ‖Dxρ‖L∞‖ρ1RV (λ)ρ‖L2→H1

+(1 + λ2)‖ρRV (λ)ρ‖L2→L2

)
where ρ1 ∈ C∞0 (R) with ρ1ρ = ρ . If ‖Dxρ‖L∞ is small, we have for large λ ,

‖ρRV (λ)ρ‖L2→H2 ≤ C|λ| eT ′|Imλ| (1.91)

in the region Imλ ≥ −A′ − δ log〈λ〉 .

Now we can state the analogue of (1.88).

Theorem 1.6 Suppose w(t, x) is the solution of
(D2

t −HV )w(t, x) = 0 on R× R
w(0, x) = w0(x) on R
∂tw(0, x) = w1(x) on R,

(1.92)

where w0 ∈ H1
comp(R), w1 ∈ L2

comp(R) with supp w0 , supp w1 ⊂ {|x| < R}. Then, for

any A > 0,

w(t, x) =
∑

Imλ>0

Res[(iRV (λ)w1 + λRV (λ)w0)e−iλt]

+
∑

0<−Imλ≤A+δ log〈λ〉

Res[(iRV (λ)w1 + λRV (λ)w0)e−iλt] + EA(t) (1.93)

where EA(t) satisfies the estimate

‖11{|x|<K}EA(t)‖ ≤ CK,Re
−(A−ε)(t−T ′)(‖w0‖H1 + ‖w1‖L2) (1.94)

for any ε > 0 and some constants T ′, K sufficiently large.
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Remarks. 1. For any A > 0, the sum in (1.93) is finite because of Lemma 1.2.

2. The first term on the right-hand side of (1.93) corresponds to the eigenvalues of HV

and can be written as

N∑
k=1

(ak cosh t
√
−Ek φ−(x, i

√
−Ek) + bk sinh t

√
−Ek φ−(x, i

√
−Ek))

where Ek , k = 1, . . . N are the eigenvalues of HV and φ−(x, i
√
−Ek) the corresponding

eigenfunctions as explained in Theorem 1.3, the ak ’s,bk ’s are given by

ak =
1

‖φ−(x, i
√
−Ek)‖L2

∫
w0(x)φ−(x, i

√
−Ek)dx

bk =
1

‖φ−(x, i
√
−Ek)‖L2

∫
w1(x)φ−(x, i

√
−Ek)dx

Proof of Theorem 1.6. For simplicity, we assume that HV has no negative eigenvalues

as their contribution to (1.93) is clear. Also, we will only consider (1.92) with w0 ≡ 0 as the

proof below clearly works in the case w1 ≡ 0 if we replace sin tλ
λ

by cos tλ in the formula for

w(t, x). The general case is then obtained by taking linear combinations.

With the above simplications understood, by the Spectral Theorem, the solution of (1.92)

can be written as

w(t) =

∫ ∞
0

sin tλ

λ
dEλ(w1)

Using Stone’s Formula to write dEλ in terms of RV (λ), we get

w(t) =
1

πi

∫ ∞
0

sin tλ(RV (λ)−RV (−λ))w1dλ

=
1

πi

∫ ∞
0

eitλ − e−itλ

2i
(RV (λ)−RV (−λ))w1dλ (1.95)

=
1

πi

(1

i

) [∫ ∞
−∞

eitλRV (λ))w1dλ−
∫ ∞
−∞

e−itλRV (λ))w1dλ

]
Now, as RV (λ) is holomorphic in the upper half-plane, we can deform the contour of inte-

gration of the first term on the right-hand side of (1.95) to the contour illustrated in Figure

7.
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By letting M →∞ , we can eliminate it from (1.95).

Next, for K large enough, we can choose ρ ∈ C∞0 (R) with ρV = V , ρ11{|x|<K} = ρ ,

ρ11{|x|<K} = 11{|x|<K} such that (1.89) holds, we then have

ρw(t) =
1

2πi

∫ ∞
−∞

e−itλρ(iRV (λ))ρw1dλ

By (1.91), we can deform the contour of integration to the contour illustrated in Figure 8

0

λ plane
-A

Imλ = −A− δ log < λ >

Figure 8

and we have

ρw(t) =
∑

0<Imλ≤−A+δ log〈λ〉

Res((iρRV (λ)w1)e−iλt) + EA,ρ(t)

with

‖EA,ρ(t)‖H1 ≤ Cρe
−(A−ε)(t−T ′)(‖w1‖L2)

Letting K and support of ρ go to infinity, we obtain (1.93) and (1.94).
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Comparison of Theorem 1.6 with the normal mode expansion (1.88) shows that resonances

are the natural analogue of eigenvalues for scattering problems. Now, it is classical that for

HV on [a, b] , with either the Dirichlet or Neumann boundary conditions, we have

#{λj : λj ≤ r} =
b− a
π

r +O(1) .

There is also an analogous result for resonances.

Theorem 1.7 Let mR(λ) be the multiplicity of resonances given by (1.73), then∑
|λ|≤r

mR(λ) =
2|ch suppV |

π
(r + o(1)) (1.96)

where ch suppV is the convex hull of the support of V .

Proof. By Proposition 1.9, Theorem 1.7 is a statement about the distribution of zeros of

the entire function X̂(λ). To prove it, we need the following generalization to distributions

of a classical result of Titchmarch.

Lemma 1.3 If u ∈ E ′(R), then

Nû(r) =
|ch suppu|

π
(r + o(1)) (1.97)

where

Nf (r) =
∑
|z|≤r

1

2πi

∮
z

f ′(w)

f(w)
dw

is the counting function of the zeros of f .

Proof. Recall that the classical Theorem of Titchmarch gives Lemma 1.3 when u ∈
L1

comp(R). We need to extend it to u ∈ E ′(R). First, observe that Titchmarch’s Theorem

implies that for u, v ∈ L1
comp(R), we have

ch supp(u ∗ v) = ch suppu+ ch supp v . (1.98)

In fact, since û ∗ v = ûv̂ , (1.97) implies

|ch supp u ∗ v| = |ch suppu|+ |ch supp v|

and we easily have

ch supp u ∗ v ⊂ ch suppu+ ch supp v .
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Thus, (1.98) follows. Now (1.98) can be generalized easily to compactly supported distribu-

tions. To see this, let u, v ∈ E ′(R) and φε ∈ C∞0 (R) be supported in (−ε, ε). Then

ch supp(u ∗ φε) + ch supp(v ∗ φε)
= ch supp((u ∗ v) ∗ (φε ∗ φε)) ⊂ ch supp u ∗ v + (−2ε, 2ε) .

By letting φε → δ0 as ε→ 0, we obtain

ch supp u+ ch supp v ⊂ ch supp(u ∗ v) .

As the reverse inclusion is clearly true, we obtain (1.98) for u, v ∈ E ′(R).

Now, to see (1.97) for u ∈ E ′(R), we apply Titchmarch’s Theorem to φ ∈ C∞0 (R) and

u ∗ φ ∈ C∞0 (R), so that

π

r
Nû(r) =

π

r

(
Nûφ̂(r)−Nφ̂(r)

)
∼ |ch supp u ∗ φ| − |ch suppφ| = |ch supp u|

where we have used (1.98) in the last equality.

Going back to the proof of Theorem 1.7, it is now clear that it suffices to show that

ch supp X = [−2(b− a), 0] where [a, b] = ch supp V . (1.99)

Assume the contrary, that is, for some ε−, ε+ ≥ 0, ε− + ε+ > 0, we have

ch supp X = [−2(b− a) + ε−, ε+] .

We first need the following

Lemma 1.4 Suppose that V ∈ L∞comp(R). Then X − δ′0(x) ∈ C([−2(b− a), 0]).

That immediately shows that ε+ = 0 and to obtain a contradictions we assume that

ε− > 0. Recall the unitarity relation,

X̂(λ)X̂(−λ) = λ2 + Ŷ (λ)Ŷ (λ) .

The density of zeros of the left hand side is given by 2c/π , where c = 2(b− a)− 2ε− . Since

the convex hull of Y Y (−•)− δ′′ is the same as ch suppY − ch suppY it follows that

chY = [d−, d+] 6= [2a, 2b] .

Suppose that d− > a . Then ∂yA−(x, y) must vanish in |x− d−/2| < d−/2− y by causality.

But that means that V (x)δ(x−y) = 0 for x < d−/2 > a which contradicts ch suppV = [a, b] .

A similar argument using A+ shows that d+ = 2b .
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Thus, our proof of Theorem 1.7 is completed.
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Figure 9

Finally, we discuss an important characterization of resonances which comes from the

method of complex scaling. It is particularly clear in the case of compactly supportd potential

on R . To introduce it, we first review the restriction of holomorphic differential operator on

C to smooth curves.
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Let ∂z = 1
2
(∂x − i∂y). If Γ ⊂ C is a smooth curve and u ∈ C∞(Γ), we define

(∂z|Γ)u = (z′(t))−1∂tu

where Γ = {z(t)} is some parameterization of Γ. Clearly, our definition of ∂z|Γ is indepen-

dent of the choice of the parameterization.

With this preliminary, by regarding D2
x as the holomorphic differential operator ∂2

z on

C , we can restrict the operator HV to any curve Γ ⊂ C with the property that

Supp V ⊂ Γ ∩ R .

The curve Γ inherits a measure from the Lebesgue measure on C . We define L2(Γ) using

this measure.

Theorem 1.8 Fix 0 < θ < π
2

. Assume Supp V ⊂ {|x| < R}. Let Γθ be a curve on C

satisfying Γθ ∩ {|z| ≤ R} = [−R,R] and Γθ ∩
{
|z| ≥ 2R
±Re z ≥ 0

}
= ±eiθ[2R,∞).

0−2R 2RR−R

z plane

θ

θ

Γθ

��
��

��
��

���

�����������

Figure 10

Put Hθ
def
= HV |Γθ . Then for −θ < arg λ < 0 (recall z = λ2 is the spectral parameter),

the spectrum of Hθ coincides with the resonances of HV in agreement with multiplicity.
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Proof. For simplicity, we write Γθ as Γ below. First we want to show that the spectrum

of Hθ is discrete or, in other words, (Hθ −λ2)−1 is meromorphic for −θ < arg λ < ε , where

ε is any positive number. As in the proof of Theorem 1.1, this is the same as showing that

(I + V (D2
z |Γ −λ2)−1)−1 is meromorphic for −θ < arg λ < ε . By analytic Fredholm theory

from the Appendix, it will follow from the compactness of the operator V (D2
z |Γ −λ2)−1 on

L2(Γ) for −θ < arg λ < ε and the bound

‖V (D2
z |Γ −λ2)−1ρ‖L2→L2 ≤ C

|λ|
for Im λ > 0 (1.100)

for any ρ ∈ C∞0 (R) with ρV ≡ V which will guarantee the existence of

(I + V (D2
z |Γ −λ2)−1)−1 for large λ with Im λ > 0 by a Neumann series argument.

Now by (1.9) we have

((D2
z |Γ −λ2)−1u(x) =

2i

λ

∫
Γ

eiλ((x−y)2)
1
2 u(y)dy

where the branch of square root is chosen to be positive on the positive real axis.

For |y| >> 0 on Γ, we have

y = ±eiθr for r > 0 ,

thus ((x − y)2)
1
2 ∼ eiθr for |x| < R and r >> 0. Hence, for −θ < arg λ < ε , |x| < R , we

have

|eiλ((x−y)2)
1
2 | ∼ e−r|λ| sin(θ+arg λ)

decays exponentially as r → ∞ . From this, we see that V (D2
z |Γ −λ2)−1 defines a compact

operator on L2(Γ). Next to see (1.100), we simply observe that

V ((D2
z |Γ −λ2)−1ρ ≡ V (D2

x −λ2)−1ρ if suppρ ⊂ {|x| < R}

and (1.100) then follows from (1.90).

Having now established that the spectrum of Hθ is discrete for −θ < arg λ < ε , we have

to show that it coincides with the resonance set of HV there. To make the argument clear,

we will assume simple eigenvalue or resonance. The argument for multiplicity follows the

same line.

Now, suppose λ0 is a simple resonance of HV which means that X̂(λ) has a simple zero

at λ0 and hence (see (1.50))

φ−(x, λ0) =

{
C eiλ0x x >> 0

e−iλ0x x << 0
.
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For |x| ≥ R , φ−(x, λ0) clearly continues analytically in x to C and satisfies

(D2
z −λ0)φ−(z, λ0) = 0 there. This means that (Hθ −λ2

0)(φ−|Γ) = 0. Note also that

e±izλ0|
Γ∩{|z|≥R,±Re z≥0} ∈ L

2(Γ ∩ {|z| ≥ R, ±Re z ≥ 0})

thus φ−|Γ ∈ L2(Γ) and is an eigenfunction of Hθ with eigenvalue λ2
0 . The eigenvalue is

simple otherwise the solution of (Hθ −λ2
0)2u = 0, u ∈ L2(Γ) would give a solution to

(HV −λ2
0)2v = 0 with

v =

{
Aeiλ0x x >> 0

B e−iλ0x x << 0
.

contradicting the simplicity of the resonance (compare with the proof of Proposition 1.9).

Similarly, a simple eigenvalue of Hθ corresponds to a simple resonance of HV .

1.5 Trace Formulae

To motivate the trace formulae, we again consider the Dirichlet realization of HV on a com-

pact interval [a, b] , denoting the corresponding self-adjoint operator by HD
V . The spectrum

of HD
V is discrete, EN < EN−1 < · · · < E1 < 0 < λ2

0 < λ2
1 < · · · → ∞ . Then for f ∈ S(R),

we have

tr f(HD
V ) =

∞∑
j=0

f(λ2
j) +

N∑
k=1

f(Ek) (1.101)

and

tr f(HD
V ) =

∫ ∞
0

g(λ)
dN

dλ
(λ)dλ+

N∑
k=1

f(Ek) (1.102)

where N(λ) = #{λ2
j : λ2

j ≤ λ2} is the positive eigenvalues counting function and g(λ) is

the even function defined by g(λ) = f(λ2).

In this section we prove the scattering theoretical analogues of (1.101) and (1.102). Our

purpose is to present the simple one-dimensional case as a preparation to the results in higher

dimensions. In higher dimensions, trace formulae link the ”geometry” of the scatterer with

the spectral and scattering data. More precisely, trace of f(HV ) can be related to dynamical

information. We will see this later.

Although for HD
V , (1.101) and (1.102) are essentially the same once we observe that

dN

dλ
(λ) =

∞∑
j=0

δ(λ−λj),

their scattering analogues are nevertheless quite different. We start with the analogue of

(1.102).
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Theorem 1.9 (Birman Krein Formula) Suppose f ∈ S(R) and g(λ) = f(λ2). Then

f(HV )− f(H0) is a trace class operator and

tr(f(HV )− f(H0)) =

∫ ∞
0

g(λ)
dσ

dλ
(λ)dλ+

N∑
k=1

f(Ek) +
θ

2
g(0) (1.103)

where θ = 1 if X̂(0) 6= 0 or 0 if X̂(0) = 0, also

σ(λ) =
1

2πi
log detS(λ) with σ(0) = 0 (1.104)

Proof. To see the trace class property, we apply the Helffer-Sjöstrand formula in the

Appendix and the relevant identity to get

f(HV )− f(H0) =
−1

π

∫
∂̄zf̃(z)(HV − z)−1V (H0 − z)−1dz f ∈ S(R) . (1.105)

Recall that f̃ is an almost analytic extension fo f and satisfies |∂̄f̃(z)| ≤ CN |Imz |N〈z〉−N
for all N ∈ N .

Since H0(H0 − z)−1 = I + z(H0 − z)−1 , we have

‖H0‖H2→L2‖(H0 − z)−1‖L2→H2 = ‖H0((H0 − z)−1‖L2→L2

= ‖I + z(H0 − z)−1‖L2→L2 ≥ 1 +
|z|
|Im z|

which implies

V (H0 − z)−1 = O

(
|z|
|Im z|

)
: L2 → H2

comp([−R,R]) (1.106)

where Supp V ⊂ [−R,R] .

The results in the Appendix implies that V (H0 − z)−1 is of trace class and

‖(HV − z)−1V (H0 − z)−1‖tr ≤
C〈z〉
|Im z|2

(1.107)

Combining (1.105), (1.106), (1.107), we have

f(HV )− f(H0) ∈ L1(L2(R), L2(R)) .

Now we can prove (1.103). For simplicity, we assume that HV has no negative eigenvalue

(as their contribution is quite clear). Thus, by Theorem 1.2, we can write

f(HV )(x, x) =
1

2π

∫ ∞
0

(e+(x, λ)e+(x,−λ) + e−(x, λ)e−(x,−λ))g(λ)dλ , (1.108)
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and we also have

f(H0)(x, x) =
1

2π

∫ ∞
0

2g(λ)dλ . (1.109)

Using Lidskii’s Theorem in the Appendix and (1.108),(1.109), we get

tr(f(HV )− f(H0)) = lim
r→∞

∫ r

−r
(f(HV )(x, x)− f(H0)(x, x))dx

=
1

2π
lim
r→∞

∫ ∞
0

∫ r

−r
[e+(x, λ)e+(x,−λ)+(e−(x, λ)e−(x,−λ)− 2]dx g(λ)dλ (1.110)

=
1

4π
lim
r→∞

∫ ∞
−∞

∫ r

−r
[e+(x, λ)e+(x,−λ) + (e−(x, λ)e−(x,−λ)− 2]dx g(λ)dλ

To eliminate the integration in x , we apply the following “reduction to boundary” trick.

The resulting formula (1.114) is known as the Maass-Selberg Formula. We have

(HV −λ2)e±(x, λ) = 0 . (1.111)

Differentiating with respect to λ , we get

(HV −λ2)∂λe±(x, λ) = 2λe±(x, λ) . (1.112)

Hence, for λ 6= 0,

e±(x, λ)e±(x,−λ)

=
(HV −λ2)

2λ
(∂λe±(x, λ))e±(x,−λ)− 1

2λ
(∂λe±(x, λ))(HV −λ2)e±(x,−λ)

=
1

2λ
(D2

x(∂λe±(x, λ))e±(x,−λ)− (∂λe±(x, λ))D2
xe±(x,−λ)) (1.113)

where we have used (1.111) and (1.112) in the first equality. Thus,∫ r

−r
e±(x, λ)e±(x,−λ)dx

=
1

2λ

∫ r

−r
[−∂2

x(∂λe±(x, λ))e±(x,−λ) + ∂λe±(x, λ)∂2
xe±(x,−λ)]dx

=
1

2λ

∫ r

−r
∂x(∂λe±(x, λ)∂xe±(x,−λ)− ∂x∂λe±(x, λ)e±(x,−λ))dx

=
1

2λ
[(∂λe±(x, λ))(∂xe±(x,−λ))− (∂x∂λe±(x, λ))e±(x,−λ)]r−r . (1.114)
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Put this into (1.110), we get

tr(f(HV )− f(H0)) =
1

8π
lim

ε→0,r→∞

∫
R\(−ε,ε)

(1.115)(∑
±

[(∂λe±(x, λ))(∂xe±(x,−λ))− (∂x∂λe±(x, λ))e±(x,−λ)]r−r − 8rλ

)
g(λ)

λ
dλ

Now, as we know the behaviors of e±(x, λ) for |x| >> 0 precisely, the remainder of the proof

amounts to a direct, but quite tedious computation.

First, we record the formulae of e±(x, λ) and their first derivatives for |x| >> 0. In the

following formulae, as a rule, the upper row gives the behavior for x >> 0 and the lower

row for x << 0,

e+(x, λ) =

{
T (λ)eiλx

eiλx +R+(λ)e−iλx

e−(x, λ) =

{
e−iλx +R−(λ)eiλx

T (λ)e−iλx

∂xe+(x, λ) =

{
iλT (λ)eiλx

iλeiλx − iλR+(λ)e−iλx

∂xe−(x, λ) =

{
−iλe−iλx + iλR−(λ)eiλx

−iλT (λ)e−iλx

∂λe+(x, λ) =

{
(T ′(λ) + ixT (λ))eiλx

ixeiλx + (R′+(λ)− ixR+(λ))e−iλx

∂λe−(x, λ) =

{
−ixe−iλx + (R′−(λ) + ixR−(λ))eiλx

(T ′(λ)− ixT (λ))e−iλx

(1.116)
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Now, by using (1.116), we compute∑
±

(∂λe±(x, λ))(∂xe±(x,−λ))|r−r

= (T ′(λ) + irT (λ))eiλr(−iλT (−λ)e−iλr)

−(−ire−iλr + (R′+(λ) + irR+(λ))eiλr)(−iλeiλr + iλR+(−λ)e−iλr)

+(−ire−iλr + (R′−(λ) + irR−(λ))eiλr)(iλeiλr − iλR−(−λ)e−iλr)

(T ′(λ) + irT (λ))eiλr(iλT (−λ)e−iλr)

= −iλ(T ′(λ)T (−λ) + irT (λ)T (−λ))− [−rλ+ iλR+(−λ)(R′+(λ) + irR+(λ))

+rλR+(−λ)e−2iλr − iλ(R′+(λ) + irR+(λ))e2iλr]

−iλ(T ′(λ)T (−λ) + irT (λ)T (−λ))− [−rλ+ iλR−(−λ)(R′−(λ) + irR−(λ))

rλR−(−λ)e−2iλr − iλ(R′−(λ) + irR−(λ))e2iλr]

= −iλ(2T ′(λ)T (−λ) +R′+(λ)R+(−λ) +R′−(λ)R−(−λ)) + 4rλ

+ terms of the form λh(r, λ)e±2iλr with smooth and tempered function h

Note that

lim
ε→0,r→∞

∫
R\(−ε,ε)

λh(r, λ)e±2iλr g(λ)

λ
dλ = 0

as g ∈ S(R). Thus,

1

8π
lim

ε→0,r→∞

∫
R\(−ε,ε)

(∑
±

(∂λe±(x, λ))(∂xe±(x,−λ))|r−r − 4rλ

)
g(λ)

λ
dλ

=
1

8πi

∫
R
(2T ′(λ)T (−λ) +R′+(λ)R+(−λ) +R′−(λ)R−(−λ))g(λ)dλ (1.117)

=
1

4

∫
R

dσ

dλ
g(λ)dλ

Here, we have used the expression of S(λ) given in (1.56) to compute dσ
dλ

. Next, we look
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at

lim
ε→0

∫
R\(−ε,ε)

[∑
±

−(∂x∂λe±(x, λ))e±(x,−λ)

]r
−r

− 4rλ

 g(λ)

λ
dλ

= lim
ε→0

∫
R\(−ε,ε)

[∑
±

−∂λ((∂xe±(x, λ))e±(x,−λ)

]r
−r

−

(∑
±

(∂xe±(x, λ))((∂λe±)(x,−λ)|r−r − 4rλ

)
g(λ)

λ
dλ

=: (I) + (II)

where the splitting into two sums corresponds to the two summation signs. By a change of

variables, lim
r→∞

(II)

8π
is exactly the same as the term computed in (1.117). Thus, so far we

obtain

tr(f(HV )− f(H0)) = 1
2

∫
R
g(λ)

dσ

dλ
dλ+

1

8π
lim
r→∞

(I) . (1.118)

Finally, we have to compute

1

8π
lim
r→∞

(I) =
1

8π
lim

ε→0,r→∞

∫
R\(−ε,ε)

∑
±

−∂λ((∂xe±(x, λ))e±(x,−λ))|r−r
g(λ)

λ
dλ

Using (1.116) we get∑
±

−∂λ(∂xe±(x, λ))e±(x,−λ))|r−r

= −∂λ{iλ[(R+(λ) +R−(λ))e2iλr − (R+(−λ) +R−(−λ))e−2iλr]}

As before, if we integrate the term

−iλ∂λ{(R+(λ) +R−(λ))e2iλr − (R+(−λ) +R−(−λ))e−2iλr} g(λ)

λ

in λ and let r →∞ , we get zero. Hence

1

8π
lim

ε→0,r→∞
(I)

=
1

8π
lim

ε→0,r→∞

∫
R\(−ε,ε)

∑
±

−∂λ((∂xe±(x, λ))e±(x,−λ))|r−r
g(λ)

λ
dλ

=
1

8πi
lim

ε→0,r→∞

∫
R\(−ε,ε)

[(R+(λ) +R−(λ))e2iλr − (R+(−λ) +R−(λ))e−2iλr]
g(λ)

λ
dλ

=
1

4πi
lim

ε→0,r→∞

∫
R\(−ε,ε)

[(R+(λ) +R−(λ))e2iλr g(λ)

λ
dλ (1.119)
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In computing (1.119), we may assume g is entire by approximating f by Schwartz functions

with compactly supported Fourier transform side, and deform the contour of integration as

shown in the following Figure 11.

λ plane

' $
0 ε−ε

- -

� �

6
?

Figure 11

This is admissible as R+(λ) and R−(λ) are holomorphic in the upper half plane and

e2iλr decays exponentially when r > 0 there. Hence

1

8π
lim

ε→0,r→∞
(I) = −1

4

(
Res0((R+(λ) +R−(λ))e2iλr g(λ)

λ

)
=

{
0 if X̂(0) = 0

−1
4

(
2Ŷ (0)

X̂(0)

)
g(0) if X̂(0) 6= 0

(1.120)

as R±(λ) = Ŷ (∓λ)

X̂(λ)
.

Finally we obtain (1.103) by putting (1.120) into (1.118) and observe that dσ
dλ

is an even

function and Ŷ (0) = −X̂(0) by (1.49) and (1.51).

Remark. σ(λ) defined in (1.104) is called the scattering phase which is a natural

analogue of the eigenvalue counting function N(λ).

We now give the analogue of (1.101) in terms of resonances.

Theorem 1.10 (Poisson Formula) Let f(λ) be a function such that if g(λ) = f(λ2), we

have ĝ(t) ∈ t3C∞0 ([0,∞)), then

tr(f(HV )− f(H0)) = 1
2

∑
λ∈C

mR(λ)g(λ) + g(0)
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where mR(0) =

{
1 if X̂(0) = 0

0 if X̂(0) 6= 0

Proof. By using Theorem 1.9, we need to show that∫ ∞
−∞

g(λ)
dσ

dλ
(λ)dλ =

∑
λ∈C

mR(λ)g(λ)− 2
N∑
k=1

f(Ek)−mR(0)g(0)

where we have used the evenness of g and dσ
dλ

.

Recall that

det S(λ) =
−X̂(−λ)

X̂(λ)
.

Then by using Theorem 1.7 and Hadamard factorization, we have

X̂(λ) = ea0+a1λP (λ) where P (λ) =
∏

λj’s areresonances

(
1− λ

λj

)
e
λ
λj

Let G be a function such that G′ = g . Note that such G exists and is unique as ĝ(0) = 0.

Then, we have∫ ∞
−∞

g(λ)
dσ

dλ
(λ)dλ = −

∫ ∞
−∞

G(λ)
d2σ

dλ2
dλ

= −
∫ ∞
−∞

G(λ)

(∑
j

(
1

(λ− λj)2
− 1

(λ+ λj)2

))
dλ

Since Ĝ ∈ t2C∞0 ([0,∞)), |G(λ)| ≤ C
|λ|2 for Im λ ≤ 0. Again, by using the estimate on

the number of resonances in Theorem 1.7, we can deform the contour of integration along

the lower half plane. We get∫ ∞
−∞

g(λ)
dσ

dλ
dλ

=
∑

λ∈C−\0

mR(λ)g(λ)−
∑
λ∈C+

mR(λ)g(λ)

=
∑
λ∈C

mR(λ)g(λ)− 2
N∑
k=1

f(Ek)−mR(0)g(0)

which completes the proof.
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