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Motivation
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We consider

ih∂tu = −h2∆u + V (x)u

u(x , 0) = exp

(
i

h
〈x , ξ0〉 −

1

2h
〈x − x0, ξ0〉2

)
.



ih∂tu = −h2∆u + V (x)u
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ih∂tu = −h2∆u + V (x)u



ih∂tu = −h2∆u + V (x)u



Some cheating: added complex absorbing potential −iA(x):

ih∂tu = −h2∆u + V (x)u − iA(x)u(x)
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Some cheating: added complex absorbing potential −iA(x):

ih∂tu = −h2∆u + V (x)u − iA(x)u(x)

No qualitative change in the interaction region.



To do this correctly should use the method of complex scaling.

Aguilar-Combes 1971, Balslev-Combes 1971, Simon 1973,
Hunziker 1986, Helffer-Sjöstrand 1985, Sjöstrand-Z 1991...

In numerical analysis known as perfectly matched layers (PML)

Berenger 1994...

The motivation in mathematical physics came from the study of
quantum resonances:

h
E

!
0

jz

The resolvent (P(h)− z)−1 may be continued meromorphically
from {Im z > 0} to {Im z < 0}. Its poles {zj(h)} are the
resonances of P(h).



A strongly trapped example:

Nakamura-Stefanov-Z 2003
In the example the classical system is completely integrable and

u(x , 0) = exp

(
i

h
〈x〉 − 1

2h
|x |2
)
.
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Quantum Resonances describe these waves resonating in
interaction regions.
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http://www.cims.nyu.edu/∼dbindel/resonant1d/



Here is how they sound:

time = linspace(0,500,5000);

sound(real(exp(-i*z*time)))


outs.mp4
Media File (video/mp4)



P(h) = −h2∆ + V (x) p(x , ξ) = ξ2 + V (x)

Classical Flow/Newton’s equations

ẋ = 2ξ , ξ̇ = −dV (x) , Φt(x(0), ξ(0)) = (x(t), ξ(t)) .

How do the properties of the flow affect solutions of PDEs?

That is, how does the classical/quantum correspondence manifests
itself in PDEs? Here are some of the different scenarios:

Non trapping ←→ Trapping

Elliptic trapping ←→ Hyperbolic trapping

Euclidean infinity ←→ Hyperbolic infinity

Note that hyperbolic can be meant in three different ways:
dynamical, geometric, and (yet to come) analytical (PDE).



Resolvent estimates

Consider the classical flow on ξ2 + V (x) = E :

ẋ = 2ξ , ξ̇ = −dV (x) , Φt(x(0), ξ(0)) = (x(t), ξ(t)) .

No trapping (i.e. all trajectories escape):

χ(P(h)− z − i0)−1χ = O(1/h) : L2 −→ L2 , χ ∈ C∞c ,

for |z − E | � 1.

... Gérard-Martinez 1988, Vasy-Z 2000, Cardoso-Vodev 2002, ...

(The cut-off χ can be replaced by a suitable weight.)



A quick explanation of the estimate:

Consider the simplest non-trapping Hamiltonian:

p = ξ1

Then P(h) = hDx1 .

Suppose χ vanishes for |x | > R.

The fundamental theorem of calculus shows that

χ(P(h)− z − i0)−1χ = O(1/h) : L2 −→ L2 .

Note that

(hDx1 − i0)−1f (x) =
i

h

∫ x1

−∞
f (t, x2, · · · , xn)dt .

Real difficulties at infinity...



Resolvent estimates

Consider the classical flow on ξ2 + V (x) = E :

ẋ = 2ξ , ξ̇ = −dV (x) , Φt(x(0), ξ(0)) = (x(t), ξ(t)) .

Trapping (i.e. some trajectories of energy E never escape):

‖χ(P(h)− z − i0)−1χ‖ ≥ log(1/h)/h , |z − E | � 1 .

Bony-Burq-Ramond 2010

A simple but striking observation...

All this applies to very general operators not just
P(h) = −h2∆ + V (x), including operators on manifolds.



Suppose the classical flow on ξ2 + V (x) = E :

ẋ = 2ξ , ξ̇ = −dV (x) , Φt(x(0), ξ(0)) = (x(t), ξ(t))

is uniformly hyperbolic:

Γ±E = {ρ : Φt(ρ) 6→ ∞ , t → ∓∞} , KE = Γ+
E ∩ Γ−E ,

and for ρ ∈ KE
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p(x , ξ) = ξ2 + V (x) , P(h) = −h2∆ + V (x) ,
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E > 0 below the lowest peak
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We define the topological pressure associated to the unstable
Jacobian:

J+
t (ρ) = det

(
dΦt
|E+

ρ

)
PE (s) = lim

T→∞

1

T
log

∑
Tγ<T

J+(γ)−s ,

where γ are closed orbits with period Tγ .

Theorem (Nonnemacher-Z 2009)

Assume the topological pressure PE (1/2) < 0. Then for
|z − E | � 1,

χ(P(h)− z − i0)−1χ = O(log(1/h)/h) : L2 −→ L2 .



Theorem (Nonnemacher-Z 2009)

Assume the topological pressure PE (1/2) < 0. Then for
|z − E | � 1,

χ(P(h)− z − i0)−1χ = O(log(1/h)/h) : L2 −→ L2 .

In dimension d = 2, the gap condition PE (1/2) < 0 is equivalent
to

dim KE < 2

i.e. the trapped set is “filamentary”, 1 ≤ dim KE ≤ 3, in general.

Recall that Bony-Burq-Ramond 2010 taught us that

KE 6= ∅ =⇒ ‖χ(P(h)− z − i0)−1χ‖ ≥ log(1/h)/h .



Applications

I Resolvent estimates on manifolds with more complicated
infinities Datchev 2008, Datchev-Vasy 2010.

I Local smoothing for the Schrödinger equation with a log loss
of regularity Datchev 2008; follows the classical approach of
Kato, brought to this setting by Burq.

I Exponential decay of energy for wave equations on manifolds
Christianson 2009

I Exponential decay of damped waves ∂2t − a(x)∂t −∆g under
a pressure condition on a(x) Schenck 2010

I Strichartz estimates with no loss despite trapping
Burq-Guillarmou-Hassell 2010

I Unique quantum ergodicity for (certain) manifolds of infinite
volume Guillarmou-Naud 2011

(each item has its own major challenges...)



Another setting for hyperbolic systems:

Normally hyperbolic trapped sets

KE , Γ±E are smooth and the hyperbolicity condition holds on KE ,

E±ρ = TρΓ±E , ρ ∈ KE , dim KE + 2 = dim p−1(E ) = 2d − 1 .

This dynamical structure is stable under perturbations
Hirsh-Pugh-Shub 1977 (smoothness means some finite, but
arbitrary large, regularity).



Resolvent estimates

Theorem (Wunsch-Z 2010)

Assume normal hyperbolicity. Then, for |z − E | � 1,

χ(P(h)− z − i0)−1χ = O(log(1/h)/h) : L2 −→ L2 .

When d = 2 this is the case of a single closed hyperbolic orbit:
dim KE = 2d − 3 = 1. Then the theorem follows from the work of
Christianson 2008 who covered the case of arbitrary closed
(weakly) hyperbolic orbit in any dimension.



Applications

Normally hyperbolic trapped sets occur in the geometry of the
Schwarzschild, Kerr, and Kerr-DeSitter black holes.

Two radial timelike geodesics, with light cones shown; r = r± are
the event horizons
But for that we need to consider infinities which are different from
the Euclidean case.



Why?
Gravitational wave detectors: GEO 600, LIGO, MiniGRAIL,
VIRGO, . . .

Quasi-normal modes (QNMs) are the frequencies of the
gravitational waves emitted by a black hole.

In principle we would like to “listen” to them as we did with
resonances.



Why?
Gravitational wave detectors: GEO 600, LIGO, MiniGRAIL,
VIRGO, . . .

Quasi-normal modes (QNMs) are the frequencies of the
gravitational waves emitted by a black hole.

Most of it, alas, by string theorists...



There are many works by physicists on quasi-normal modes;
however, there have been only a handful of attempts to put these
works on a mathematical foundation: Bachelot 1991,
Bachelot–Motet-Bachelot 1993, Sá Barreto–Z 1997, Bony–Häfner
2007, Melrose–Sá Barreto–Vasy 2008,

Decay of the wave equation for black hole metrics has been much
studied recently: Bony–Häfner 2007, 2010,
Dafermos–Rodnianski 2007, 2008, 2009,2010,
Donninger–Schlag–Soffer 2009, Finster–Kamran–Smoller–
Yau 2009, Marzuola–Metcalfe–Tataru–Tohaneanu 2008,
Tataru 2009, Tataru–Tohaneanu 2008. . .



Applications of normally hyperbolic estimates

Dyatlov 2010: exponential decay of waves for the Kerr-DeSitter
metric

Vasy 2011: exponential decay for general “Kerr-DeSitter” metrics
without any symmetry assumptions (fully uses the general result
about normally hyperbolic trapped sets).

Dyatlov 2011: asymptotic behaviour of quasinormal modes for
Kerr (rotating) black holes



Comparison of Dyatlov’s semiclassical results with exact numerical
results of Berti-Cardoso-Starinets 2009 for low energy [sic!] QNM:

0.094 0.0945 0.095 0.0955 0.096 0.0965 0.097 0.0975 0.098 0.0985
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.29 0.295 0.3 0.305 0.31 0.315 0.32
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The real and imaginary axis interchanged; semiclassical and exact;
the different points correspond to increase in rotation of the black
hole: Zeeman effect.



These quasinormal modes are poles of the meromorphic
continuation of the resolvent (P − z)−1.

Different kinds of infinities:

Mazzeo-Melrose 1987: modeled on Γ\Hn, geometrically finite
without parabolic elements (mixed ranked cusps).

Guillarmou 2004 – a more precise statement...

Mazzeo-Guilllarmou 2010: modeled on Γ\Hn, geometrically finite
with parabolic elements.

Many contributions in the meantime: Froese-Hislop-Perry 1991,
Guillope-Z 1995, Bunke-Olbrich 1999, ...

But none of these results are constructive enough to give estimates
on the resolvent, even if there is no trapping...



The Mazzeo-Melrose result was used to define quasinormal modes
for Schwarzschild-de Sitter black holes by Sá Barreto-Z.

Vasy recently realized that the black hole setting, including Kerr-de
Sitter (not covered by M-M but described by Dyatlov) is easier to
study: reversing the S-Z strategy gives a simple and more effective
proof of resolvent continuation for Γ\Hn-like spaces (no parabolic
elements).

It eliminates a lot of “degenerate” microlocal analysis and replaces
it by better known microlocal methods.



Simplest model

P = (xDx)2 + x2D2
w , −1 < x < 0 , w ∈ S1 ,

The hyperbolic infinity is given by x = 0 is (at x = −1, Dirichlet
boundary condition, say).

We want to continue (P − z)−1 from Im z > 0 to C \ (−∞, 0] as
an operator on some weighted spaces.

That is normally achieved by obtaining some Fredholm properties.

Now, put y = −x2 and change the C∞ structure so that y is a
new coordinate on our cylinder. Then

P̃(z) := yµ−
1
2 (P − z)y−µ−

1
2 = −DyyDy + D2

w +
√

zDy −
√

z .

(for some suitable µ = µ(z); this defines the weighted spaces)



P̃(z) = −DyyDy + D2
w +
√

zDy −
√

z

Now forget that y < 0 and consider the equation on a larger
cylinder. In the black hole setting this corresponds to going
through the event horizon – you cannot come back but you do not
even notice this happening!

The behaviour changes from elliptic to hyperbolic (the latter in the
PDE rather than geometric sense now):

p̃ = −yη2 + ω2

(y ,w ; η, ω) ∈ T ∗(Ry × S1w )



p̃ = −yη2 + ω2

The phase space picture is obtained by using polar coordinates for
the phase variables:

(η, ω) = ρ−1(cos θ, sin θ)

θ = 0

θ = π

y = 0

We see the radial points at y = 0 and ω = 0.



One still needs to modify the operator by adding a suitably chosen
complex absorbing term:

−DyyDy + D2
w +
√

zDy −
√

z − iA(y ,w ,D) ,

A(y ,w ,D) = 0 , y ≤ 0

Since y = 0 is characteristic A supported in y > 0 does not affect
the solution in y < 0.

The classical propagation estimates of Hörmander away from the
radial points, and the estimates developed by Melrose for
asymptotically Euclidean scattering near the radial points, give the
desired Fredholm properties.



Vasy’s method combined with the “gluing” arguments of
Datchev-Vasy gives also semiclassical estimates based on the
hyperbolic (now in the dynamical sense!) analysis of
Nonnenmacher-Z and Wunsch-Z:

Theorem (Datchev 2008, Datchev-Vasy 2010, Vasy 2011)

Assume hyperbolicity on the trapped set and the pressure
assumption, or the normal hyperbolicity. Then, for asymptotically
euclidean, asymptotically hyperbolic, or asymptotically Kerr-de
Sitter (with some modifications in the statement), we have

χ(P(h)− z − i0)−1χ = O(log(1/h)/h) : L2 −→ L2 .

Hence many things developed for Euclidean infinities are now
established for more general infinities.

And the black hole examples show that this is not a totally
“academic” direction...


