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Abstract. Using the method of complex scaling we show that scattering resonances

of −∆ + V , V ∈ L∞
c (Rn), are limits of eigenvalues of −∆ + V − iεx2 as ε → 0+.

That justifies a method proposed in computational chemistry and reflects a general

principle for resonances in other settings.

1. Introduction and statement of results

In this note we show that scattering resonances can be defined as viscosity limits,

that is limits of eigenvalues of Hamiltonians suitably regularized as infinity. The de-

tailed proofs are presented in the simplest case of the Schrödinger operator with a

compactly supported potential and rely only on standard techniques.

We consider

P := −∆ + V, V ∈ L∞comp(Rn),

where L∞comp denotes the spaces of bounded functions vanishing outside of some com-

pact set. (Similarly the subscript L•loc denotes function in the space L• on compact

sets.) The scattering resonances are defined as the poles of the meromorphic continu-

ation of resolvent:

RV (z) := (−∆ + V − z)−1 : L2(Rn)→ L2(Rn), Im z > 0,

from the upper half-plane through the continuous spectrum. More precisely,

RV (z) : L2
comp(Rn)→ L2

loc(Rn), (1.1)

continues meromorphically to the double cover of C when n is odd and to the loga-

rithmic cover of C when n is even. The poles of this continuation coincide with the

poles of the scattering matrix for the potential V . Their multiplicity (except at the

threshold z = 0) are given by

m(z) := rank

∮
z

RV (ζ)dζ, (1.2)

where the integration is over a small circle around z – see [DyZ2, Chapter 3].

Equivalently, we can consider Green’s function, that is the integral kernel of RV (z),

RV (z)f(x) =

∫
Rn
G(z, x, y)f(y)dy, (1.3)
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Figure 1. An illustration of the results of Theorem 1 in the case of

a specific potential shown on the left. Resonances are computed using

squarepot.m [BiZ]. The eigenvalues of Pε, ε = 1/4 and ε = 1/10 are

computing by discretizing the operator using using the first 151 eigen-

functions of the harmonic oscillator D2
x + x2.

and look at the poles of the continuation of z 7→ G(z, x, y) for x and y fixed. Another

way, based on the method of complex scaling, will be reviewed in §2.

We now consider a regularized operator,

Pε := −∆ + V − iεx2, ε > 0. (1.4)

It is easy to see (with details reviewed in §4) that Pε is an unbounded operator on

L2(Rn) with a discrete spectrum. We have

Theorem 1. Suppose that {zj(ε)}∞j=1 are the eigenvalues of Pε. Then, uniformly on

compact subsets of {z : −π/4 < arg z < 7π/4},

zj(ε)→ zj, ε→ 0+,

where zj are the resonances of P .

Remarks. 1. A more precise statement involving continuity of spectral projections

is given in §5. The term viscosity is motivated by the viscosity definition of Pollicott–

Ruelle resonances given in Dyatlov–Zworski [DyZ1] – see Example 3 below.

2. When ε < 0 the spectrum of Pε is given by complex conjugates of the spectrum of

P−ε. Hence we have

zj(ε)→ z̄j, ε→ 0−, (1.5)

uniformly on compact subsets of {z : −7π/4 < arg z < π/4}.
3. The term −iεx2 is an example of a complex absorbing potential and other potentials

can also be used – see the discussion below. The proof here requires some analyticity

properties of the complex absorbing potential.
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4. The restriction to arg z > −π/4 when using −iεx2 is due to the fact that for V ≡ 0

the spectrum of −∆ − iεx2 is given by ε
1
2 e−πi/4(2|`| + n), ` ∈ Nn which is a rescaled

spectrum of the Davies harmonic oscillator – see §3. One can expand the range using

εe−iαx2, 0 < α < π in which case we recover resonances with arg z > −α/2.

5. The proof applies with simple modifications to compactly supported black box

perturbations on Rn introduced in [SjZ] – see [DyZ2, Chapter 4] and [Sj3]. In that

case we need to replace −iεx2 by −iε(1− χ(x))x2 where χ ∈ C∞c (Rn) is equal to 1 on

a sufficiently large set – see Example 2 below.

The computational method based on calculating eigenvalues of Pε was introduced

in physical chemistry – see Riss–Meyer [RiMe] and Seideman–Miller [SeMi] for the

original approach and Jagau et al [JZBRK] for some recent developments and refer-

ences. However no rigorous mathematical treatments seem to be available and some

new interesting open questions can be posed – see Example 4 below.

Fixed complex absorbing potentials have already been used in mathematical lit-

erature on scattering resonances. Stefanov [St] showed that semiclassical resonances

close to the real axis can be well approximated using eigenvalues of the Hamilton-

ian modified by a complex absorbing potential. Nonnenmacher–Zworski [NZ1],[NZ2]

used fixed complex absorbing potentials to study resonance problems employing gluing

techniques of Datchev–Vasy [DV1],[DV2]. Yet another application was given by Vasy

in [V] where microlocal complex absorbing potentials were used to obtain Fredholm

properties and meromorphic continuation of the resolvents (see also [DyZ2, Chapter

5]).

We conclude this section with some examples to which Theorem 1 does not apply

directly but which fit in the same framework.

Example 1. As explained in [Sj2, (c.31)–(c.33)] the theory of Helffer–Sjöstrand [HeSj]

applies to the case of potentials which are homogeneous of degree m and satisfy the

condition V (x) = 0, x 6= 0 =⇒ ∇V (x) 6= 0. That means that resonances of P =

−∆ + V can be defined in {z ∈ C, arg z > −θ0} for some θ0 > 0. It is interesting to

ask if the viscosity limit gives a global definition in that case.

That is easily seen in the case of quadratic potentials. In fact, suppose that

V (x) = λ2
1x

2
1 + · · ·+ λ2

rx
2
r − µ2

1x
2
r+1 − · · · − µ2

n−rx
2
n, λj, µ` > 0.

As recalled in §3 the eigenvalues of Pε, ε > 0, are given by

r∑
j=1

(λ2
j − iε)

1
2 (2kj + 1)− i

n−r∑
j=1

(µ2
j − iε)

1
2 (2kj+r + 1), k ∈ Nn

0 ,
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where the branch of the square root is chosen to be positive on R+. As ε → 0+ we

obtain the globally defined set of resonances:

r∑
j=1

λj(2kj + 1)− i
n−r∑
j=1

µj(2kj+r + 1), k ∈ Nn
0 .

Example 2. This example fits in the framework of black box scattering with one

dimensional infinity. Consider the modular surface M = SL2(Z)\H2 and ∆M ≤ 0

the Laplacian on M . We then put P = −∆M − 1
4

where 1
4

guarantees that the the

continuous spectrum of P is given [0,∞). This is a black box Hamiltonian on H0 ⊕
L2([0,∞)) in the sense of [SjZ] – see [DyZ2, §4.1]. Traditionally, the resonances of the

quotient M are defined as poles of the meromorphic continuation of (−∆M−s(1−s))−1

from Re s > 1
2

to C and are given by the embedded eigenvalues with Re s = 1
2

and by

the non-trivial zeros of ζ(2s) where ζ is the Riemann zeta function. The resonances of

P are then given by s(1− s).
If we choose the fundamental domain of SL2(Z) to be {x+ iy : |x| ≤ 1, x2 + y2 ≥ 1}

then the Laplacian in the cusp y > 1 is y−2(∂2
x + ∂2

y). The Hamiltonian on L2([0,∞)r)

is given by −∂2
r , r = log y – see [DyZ2, §4.1, Example 3]. In the language of Theorem 1

(see Remark 5) and in (x, y) coordinates

Pε = −∆M − 1
4
− iε(1− χ(y))(log y)2,

where χ ∈ C∞c ([0,∞)), χ(y) ≡ 1 for y < 3
2

and χ(y) ≡ 1 for y > 2. The operator Pε
has discrete spectrum for ε > 0 and the eigenvalues converge to the resonances of P

uniformly on compact subsets of Im z > −π/4. Equivalently if we define Σε

s(ε) ∈ Σε ⇐⇒ s(ε)(1− s(ε)) ∈ σ(Pε)

The limit points of Σε, ε→ 0+, in Re s < 1
2
, |s| > C are given by the nontrivial zeros

of ζ(2s).

Example 3. Suppose that X is a compact manifold and V is a vector field on X

generating an Anosov flow, ϕt = exp tV . That means that the tangent space to X

has a continuous decomposition TxX = E0(x) ⊕ Es(x) ⊕ Eu(x) which is invariant,

dϕt(x)E•(x) = E•(ϕt(x)), E0(x) = RV (x), and for some C and θ > 0 fixed

|dϕt(x)v|ϕt(x) ≤ Ce−θ|t||v|x, v ∈ Eu(x), t < 0,

|dϕt(x)v|ϕt(x) ≤ Ce−θ|t||v|x, v ∈ Es(x), t > 0.
(1.6)

where | • |y is given by a smooth Riemannian metric on X. A class of examples is

given by X = T 1M where M is a negatively curved Riemannian manifold and ϕt is

the geodesic flow in its unit tangent bundle X.
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If ∆g ≤ 0 is the Laplacian for some metric on X then – see [DyZ1] – the limit set of

the spectrum of

Pε = V/i+ iε∆g, ε→ 0+

is a discrete set given by the Pollicott–Ruelle resonances – see [DyZ1] for the defini-

tion and references. Adding the Laplacian corresponds to taking a viscosity regular-

ization and that explains our terminology. Another interpretation is given in terms

of Brownian motion: the pullback by the flow flow x(t) := ϕt(x(0)), is given by

eitP0f(x) = f(x(t)), ẋ(t) = −Vx(t), x(0) = x. For ε > 0 the evolution equation is

replaced by the Langevin equation:

e−itPεf(x) = E [f(x(t))] , ẋ(t) = −Vx(t) +
√

2εḂ(t), x(0) = x,

where B(t) is the Brownian motion corresponding to the metric g on X. Hence con-

sidering Pε corresponds to a stochastic perturbation of the deterministic flow. In the

case of scattering resonances the same interpretation can be proposed on the Fourier

transform side.

The assumption that the flow satisfies (1.6) is crucial as otherwise the limit set is

typically not discrete. The simplest example is given by X = S1 × S1, S1 = R/2πZ,

and V = ∂x1 +α∂x2 , α /∈ Q, ∆g = ∂2
x1

+ ∂2
x2

. In that case the limit set of the spectrum

of Pε is the lower half plane. Other limit sets are possible, for instance in the case of

the geodesic flow on S2, X = T 1S2 ' SO(3). The spectrum of P0 is given by Z (with

infinite multiplicities) and if we take ∆g to be the Casimir operator then the limit set

of the spectrum of Pε as ε → 0+ is Z − i[0,∞). For yet another example see [DyZ1,

§1].

Example 4. We expect that viscosity definition of resonances remains valid, in a small

angle near the real axis, for all dilation analytic potentials – see [HeSj] and references

given there and §2 below for a review of complex scaling. It would be interesting to

find a Schrödinger operator P for which the limit set of the spectrum of Pε, ε → 0 is

not discrete. Candidates are given by potentials which are not dilation analytic, for

instance,

−∂2
x +

sinx

x
, x ∈ R.

Notation. We use the following notation: f = O`(g)H means that ‖f‖H ≤ C`g where

the norm (or any seminorm) is in the space H, and the constant C` depends on `.

When either ` or H are absent then the constant is universal or the estimate is scalar,

respectively. When G = O`(g) : H1 → H2 then the operator G : H1 → H2 has its norm

bounded by C`g. Also when no confusion is likely to result, we denote the operator

f 7→ gf where g is a function by g.
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2. Review of complex scaling

The complex scaling method changes the original Hamiltonian P = P0 to a non-self-

adjoint Hamiltonian P0,θ such that P0,θ − z : H2 → L2 is a Fredholm operator when

arg z > −2θ. It was introduced by Aguilar–Combes [AgCo], Balslev–Combes [BaCo]

and Simon [Si]. For a review of practical applications of this method in computational

chemistry see Reinhardt [Rei]. As the method of perfectly matched layers (PML) it has

reappeared in numerical analysis – see Berenger [Be]. The presentation here follows the

geometric approach of Sjöstrand–Zworski [SjZ]. Eventually the proof that the viscosity

eigenvalues converge to scattering resonances is a straightforward application of the

methods of [SjZ] (see also [Sj3, §7.2] for a more detailed presentation and [DyZ2, §4.5]

for an approach to complex scaling based on the continuation of the Green function

G(z, x, y) in (1.3) in variables x and y).

Suppose that Ω ⊂ Cn is an open subset and that

P (z,Dz) =
∑
|α|≤m

aα(z)Dα
z , Dzj := 1

i
∂zj , Dα

z = Dα1
z1
· · ·Dαn

zn , (2.1)

is a differential operator with holomorphic coefficients. For instance we can have

P (z,Dz) =
∑n

j=1 D
2
zj
− iεz2

j .

Suppose that Ω ⊂ Cn is an open subset and that Γ ⊂ Ω is a maximal totally real

submanifold. That means that Γ is a smooth real submanifold of dimension n such

that

∀x ∈ Γ, TxΓ ∩ iTxΓ = {0}. (2.2)

Here we identify TxΓ with a real subspace of Cn. The condition (2.2) means that there

exists a complex linear change of variables A : Cn → Cn such that A(TxΓ) = Rn ⊂ Cn.

Locally, Γ can be represented using real coordinates:

Rn ⊃ U 3 x 7→ f(x) = (f1(x), · · · , fn(x)) ∈ Γ ⊂ Ω ⊂ Cn. (2.3)

Composing the matrix ∂xf(x) := (∂xjfk(x))1≤k,j≤n with A we obtain an invertible

matrix Rn → Rn. That means that

det

(
∂fk(x)

∂xj

)
1≤k,j≤n

6= 0. (2.4)
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Conversely, if (2.4) holds, then ∂f(x) is an injective complex linear matrix and for any

sets U, V ⊂ Cn, ∂f(x)(U) ∩ ∂f(x)(V ) = ∂f(x)(U ∩ V ). Hence,

TxΓ ∩ iTxΓ = ∂f(x)(Rn) ∩ i∂f(x)(Rn) = ∂f(x)(Rn) ∩ ∂f(x)(iRn)

= ∂f(x)(Rn ∩ iRn) = {0},

and (2.4) implies (2.2). The volume form on Γ is obtained by pushing forward the

standard volume form on Rn by f . That of course depends on the choice of f (in what

follows the uniformity will be guaranteed by (2.8) below).

Example. As a simple illustration consider n = 2 and f(x1, x2) = (x1 + ix2, 0) ∈ C2.

Then

∂xf(x) =

[
1 i

0 0

]
, Txf(R2) = C⊕ {0} ⊂ C2.

The tangent space is not totally real and condition (2.4) is violated. To introduce the

next topic we also note we cannot restrict operators, P , with holomorphic coefficients

to f(R2) in a way that for holomorphic functions, u, (Pu)|f(R2) = (Pf(Rn))(u|f(Rn)). As

an example consider P = ∂z2 and u = z2.

The point of introducing totally real submanifolds Γ is the fact that an operator, P ,

with holomorphic coefficients can be restricted to an operator with complex smooth

coefficients on Γ, PΓ, in such a way that for u holomorphic near Γ, Pu|Γ = PΓ(u|Γ).

The differential operator P (z,Dz) given in (2.1) defines a unique PΓ a differential

operator on Γ as follows. Using (2.3) we can identify a small neighbourhood of any

z0 ∈ Γ with U ⊂ Rn. Then u ∈ C∞(Γ ∩ f(U)) can be identified with u ◦ f ∈ C∞(U).

We then have

(PΓu) ◦ f(x) =
∑
|α|≤m

(aα ◦ f)(x)((t∂xf(x)−1Dx)
α(u ◦ f)(x). (2.5)

It is easy to see that this definition is independent of the choice of f and that the

condition (2.4) is crucial.

The key fact is the standard result about continuation of solutions to PΓu. The

proof based on [Le], [Ma] and [Sj1] can be found in [SjZ, Lemma 3.1] and (in more

detail) [Sj3, Lemma 7.2]. With the notation above we have the following:

Lemma 1. Suppose that W ⊂ Rn is open and that F : [0, 1]×W 3 (s, x) 7→ F (s, x) ∈
Cn, is a smooth proper map satisfying for all s ∈ [0, 1]

det ∂xF (s, x) 6= 0, and x 7→ F (s, x) is injective.

In addition assume that there exists a compact set K ⊂ W such that

x ∈ W \K =⇒ F (0, x) = F (s, x), 0 ≤ s ≤ 1,
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and that F ([0, 1] × W ) ⊂ Ω with P (z,Dz) a differential operator with holomorphic

coefficients in Ω.

Now assume that for Γs := F ({s} ×W ), PΓs is an elliptic differential operator in

the sense that ∣∣ ∑
|α|=m

aα(z)ζα
∣∣ ≥ C|ζ|m, (z, ζ) ∈ T ∗Γs.

If u0 ∈ C∞(Γ0) and PΓ0u0 extends to a holomorphic function on Ω, then for every

s ∈ [0, 1] there exists a holomorphic function, Us defined near Γs such that, for some ε,

U0|Γ0 = u0, |s− s′| < ε =⇒ Us = Us′ on the intersection of their domains.

In other words, the function u0 defined on Γ0 extends to a possibly multivalued

function U in a neighbourhood of f([0, 1]×W ).

The lemma will be applied to a family of deformations of Rn in Cn. Our goal is to

restrict the operator Pε = −∆ − iεx2 + V , ε ≥ 0, to the corresponding totally real

submanifolds. For that the deformation has to avoid the support of V and we choose

r0 such that suppV ⊂ B(0, r0). We then construct

[0, π)× [0,∞) 3 (θ, t) 7−→ gθ(t) ∈ C (2.6)

which is C∞, is injective on [0,∞) for every fixed θ and satisfies

gθ(t) = t for 0 ≤ t ≤ r0, (2.7)

0 ≤ arg gθ(t) ≤ θ, ∂tgθ 6= 0, (2.8)

arg gθ(t) ≤ arg ∂tgθ(t) ≤ arg gθ(t) + ε0, (2.9)

gθ(t) = eiθt for t ≥ T0 where T0 depends only on ε0 and r0. (2.10)

We now define the totally real submanifolds, Γθ, as images of Rn under the maps

fθ : Rn → Cn, fθ(x) := gθ(|x|)x/|x|, Γθ := fθ(Rn). (2.11)

For ε ≥ 0 and 0 ≤ θ < π we put

−∆θ := (∆z)|Γθ , xθ := z|Γθ ,
Qε,θ := −∆θ − iεx2

θ, Pε,θ := Qε,θ + V.
(2.12)

Parametrizing Γθ by (t, ω) ∈ [0,∞)× Sn−1, (t, ω) 7→ gθ(t)ω, we have

−∆θ =
(
g′θ(t)

−1Dt

)2 − i(n− 1)gθ(t)
−1g′θ(t)

−1Dt + gθ(t)
−2D2

ω, (2.13)

where Dt = ∂t/i and D2
ω = −∆Sn−1 . The symbol is given by

σ(−∆θ) = g′θ(t)
−1τ 2 + gθ(t)

−2w2, (t, ω; τ, w) ∈ T ∗([0,∞)× Sn−1).

The basic result based on ellipticity at infinity is

−2θ+δ < arg z < 2π−2θ−δ, |z| ≥ δ =⇒ (−∆θ−z)−1 = Oε(1) : L2(Γθ)→ H2(Γθ).
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This follows from [SjZ, Lemmas 3.2–3.5] applied with P = −∆. As will be reviewed

in §4 this shows that P0,θ− z : H2 → L2 is a Fredholm operator in this range of values

of z and that the eigenvalues are independent of θ.

The crucial property is

Lemma 2. Let R0(z) = (−∆− z)−1 : L2 → H2, Im z > 0, be the free resolvent and let

R0(z) also denote its analytic continuation across [0,∞) as an operator L2
comp → H2

loc.

Suppose that χ ∈ C∞c (B(0, r0)) so that χ is defined on Γθ. Then for −2θ < arg z <

2π − 2θ, θ < π,

χR0(z)χ = χ(−∆θ − z)−1χ. (2.14)

Proof. We recall the main features of the proof which is implicit in [SjZ, §3]. It is

sufficient to establish the identity (2.14) for 0 < arg z < 2π − 2θ as it then follows by

analytic continuation. It is also enough to show that in this range of z and 0 ≤ θ1 <

θ2 ≤ θ, |θ1 − θ2| � 1,

χ(−∆θ1 − z)−1χ = χ(−∆θ2 − z)−1χ. (2.15)

For that we show that for f ∈ L2(B(0, r0)) ⊂ L2(Γθj) there exists U holomorphic in a

neighbourhood Ωθ1,θ2 of ⋃
θ1≤θ≤θ2

(Γθ \B(0, r0)) ⊂ Cn

such that

U |Γθj (x) = [(−∆θj − z)−1χf ](x) for x ∈ Γθj \B(0, r0). (2.16)

The unique continuation property for second order elliptic operators then shows that

χ(∆θ1 − z)−1χf = χ(∆θ2 − z)−1χf,

proving (2.14).

To show the existence of U such that (2.16) holds we use Lemma 1 applied to a

modified family of deformations. The key is to show that a holomorphic extension,

U , of the solution to (−∆θ1 − z)u1 = χf , u1 ∈ L2(Γθ1), restricts to u2 ∈ L2(Γθ2)

(the equation (−∆θ2 − z)u2 = χf is automatically satisfied). That means that u2 =

(−∆θ2 − z)−1(χf) proving (2.16).

The modified family of contours is obtained as follows. Fix T � 1 and choose

χ ∈ C∞c ((2, 5); [0, 1]) equal to 1 near [3, 4]. Then define

gθ1,θ2,T (t) := gθ1(t) + χ(t/T )(gθ2(t)− gθ1(t)),

Γθ1,θ2,T := {gθ1,θ2,T (t)ω : t ∈ [0,∞), ω ∈ Sn−1} ⊂ Cn.

We can apply Lemma 1 to the family of totally real submanifolds interpolating be-

tween Γθ1 and Γθ1,θ2,T : [0, 1] 3 s 7−→ Γθ1,θ1+s(θ1,θ2),T . That implies that there exists a
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R0 T 2T 3T 4T 5T 6T

θ1

θ2

Γθ1,θ2,T

Figure 2. The deformed totally real submanifold Γθ1,θ2,T interpolating

between Γθ1 and Γθ2 .

holomorphic function UT defined in a neighbourhood of the union of these submani-

folds and such that u1 = UT |Γθ1 . Changing T we obtain a family of functions agreeing

on the intersections of their domains and that gives U defined in the neighbourhood

Ωθ1,θ2 . To see that U |Γθ2 ∈ L
2(Γθ2) it suffices to show that

‖UT |Γθ1,θ2,T ‖L2(Γθ1,θ2,T ) ≤ C0‖u1‖L2(Γθ1∩{T≤|z|≤6T},), (2.17)

where C0 is independent of T . (We apply (2.17) with T = 2j and sum over j.)

To see (2.17)

Ω1(T ) = {z ∈ Cn : 2T ≤ |z| ≤ 5T} ∩ Γθ1,θ2,T ⊃ Γθ1,θ2,T \ Γθ1 ,

Ω2(T ) = {z ∈ Cn : T ≤ |z| ≤ 6T} ∩ Γθ1,θ2,T , Ω2(T ) \ Ω1(T ) ⊂ eiθ1Rn.

We claim that for T large and u ∈ C∞(Γθ1,θ2,T ),

‖u‖L2(Ω1(T )) ≤ C‖(−∆Γθ1,θ2,T
− z)u‖L2(Ω2(T )) + C‖u‖L2(Ω2(T )\Ω1(T )). (2.18)

For |θ2 − θ1| � 1, this estimate is a perturbation of a standard semiclassical ellip-

tic estimate: treating h := 1/T as a semiclassical parameter, uniform ellipticity of

−e−2iθh2∆− z shows that for v ∈ C∞(Rn),

‖v‖L2({2≤|x|≤5}) ≤ C‖(−e−2iθh2∆− z)v‖L2({1≤|x|≤6}) + C‖v‖L2({1≤|x|≤2}∪{5≤|x|≤6}.
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(This can be seen applying the inverse from [Z, Theorem 4.29] to χv where χ ∈
C∞c ((1, 6)) is equal to 1 on [2, 5].) The properties of Ωj(T ) then imply (2.17) completing

the argument. �

3. The Davies harmonic oscillator

The operator Hε,γ := −∆ + e−iγεx2, ε > 0, 0 ≤ γ < π, was used by Davies [Da] to

illustrate properties of non-normal differential operators. We recall the following basic

result:

Lemma 3. The operator Hε,γ is an unbounded operator on L2 with the discrete spec-

trum given by

σ(Hε,γ) = e−iγ/2
√
ε(n+ 2|Nn

0 |), |α| = α1 + · · ·+ αn. (3.1)

If Ω b {z : −γ < arg z < 0} \ e−iγ/2[0,∞), then for some constant C1 = C1(Ω),

1

C1

eε
− 1

2 /C1 ≤ ‖(Hε,γ − z)−1‖L2→L2 ≤ C1e
C1ε
− 1

2 , z ∈ Ω. (3.2)

In addition for any δ > 0 there exists a constant C2 such that, uniformly in ε > 0,

‖(Hε,γ − z)−1‖L2→L2 ≤ C2/|z|, δ < arg z < 2π − γ − δ, |z| > δ. (3.3)

Proof. By rescaling y =
√
εx this operator in unitarily equivalent to−ε∆y+e

−iγy2, that

is a semiclassical, h =
√
ε, quadratic operator. For the analysis of the spectrum and

upper bounds on the resolvent for general quadratic operators see Hitrik–Sjöstrand–

Viola [HSV] and references given there – in particular we obtain (3.1) and the upper

bound in (3.2). The lower bound in (3.2) follows from general arguments for operators

with analytic coefficients – see [DeSZ, §3] and the bound (3.3) from (semiclassical)

ellipticity of −h2∆y + e−iγy2 − z for δ < arg z < 2π − γ − δ, |z| > δ. �

We now consider the special case of Hε,π/2 = Qε,0 and of its deformation Qε,θ – see

(2.12). The facts we need are given in the next two lemmas. The first is the analogue

of Lemma 2:

Lemma 4. In the notation of Lemma 2, 0 ≤ θ ≤ π/8, ε > 0, and −2θ < arg z <

3π/2 + 2θ we have

χ(Qε,0 − z)−1χ = χ(Qε,θ − z)−1χ. (3.4)

In particular, for 0 ≤ θ ≤ π/8, the spectrum is independent of θ and given by√
εe−iπ/4(n+ 2|Nn

0 |).

Proof. We follow the argument in the proof of Lemma 2 and use the notation intro-

duced there. Hence it is enough to prove that 0 ≤ θ1 < θ2 ≤ π/8 and |θ1− θ2| small it

is enough to show that

χ(Qε,θ1 − z)−1χ = χ(Qε,θ2 − z)−1χ.
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2θ

2θ

π/4

σ(Q
ε,0 ) =

σ(Q
ε,θ )

Figure 3. A visualization of the spectrum of Qε,0 = −∆−iεx2 which is

equal to the spectrum of the deformed operator Qε,θ. The lightly shaded

region is the numerical range of Qε,0 and the darker shaded region, the

numerical range of −e−2iθ∆− ie2iθεx2. The estimates for the resolvents

of Qε,θ improve outside of that region.

We only need to establish this for z ∈ ei(−2θ1+π/2)(1,∞) as then the result follows by

analytic continuation. The only difference is an estimate which replaces (2.18): for

τ > 1,

‖u‖L2(Ω1(T )) ≤ C‖(QΓθ1,θ2,T
− ie−2θ1τ)u‖L2(Ω2(T )) + C‖u‖L2(Ω2(T )\Ω1(T )),

Qθ1,θ2,T := −∆Γθ1,θ2,T
− iε(x|Γθ1,θ2,T )2

(3.5)

uniformly for T � 1. To see this we first note that for ε > 0, Qθ1,θ2,T − z, z ∈ C, is a

Fredholm operator (since it is elliptic and near infinity it is equal to e−2iθHε,π/2−4θ).

To obtain an estimate we notice that for t > T

g′θ1,θ2,T (t) = χ(t/T )eiθ2 + (1− χ(t/T ))eiθ2 + (t/T )χ′(t/T )(eiθ2 − eiθ2),

so that from (2.8) and (2.10),

θ1 − C|θ2 − θ1| ≤ arg g′θ1,θ2,T (t) ≤ θ2.

Also, θ1 ≤ arg gθ1,θ2,T (t) ≤ θ2. Hence,

Re〈(e2iθ1Qθ1,θ2,T − iτ)u, u〉 ≥ ‖Du‖2/C
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where we used the fact that for for 0 ≤ θ ≤ π/8, Re(−ie4θ) ≥ 0. The imaginary part

is then estimated as follows,

− Im〈(e2iθ1Qθ1,θ2,T − iτ)u, u〉 ≥ τ‖u‖L2(Γθ1,θ2,T ) −O(|θ2 − θ1|)‖Du‖2.

We conclude that when |θ2 − θ1| is small enough

‖(QΓθ1,θ2,T
− ie−2iθ1τ)u‖ ≥ (‖u‖+ ‖Du‖)/C,

This and the Fredholm property imply that

(Qθ1,θ2,T − ie−2iθ1τ)−1 = O(1) : L2(Γθ1,θ2,T )→ H1(Γθ1,θ2,T ).

that is the operator is invertible with bounds independent of T . From this (3.5)

follows by a standard localization argument: we choose χT ∈ C∞(Ω2(T ), [0, 1]), such

that χT = 1 on Ω1(T ) with derivative bounds independent of T . We then apply the

inverse above to (Qθ1,θ2,T − ie−2iθ1τ)χTu with the commutator terms estimated by

‖u‖L2(Ω2(T )\Ω1(T )). �

The next lemma shows how complex scaling dramatically improves the exponential

bound (3.2):

Lemma 5. Suppose that 0 ≤ θ ≤ π/8 and that Ω b {z : −2θ < arg z < 3π/2 + 2θ}.
Then there exists C = C(Ω) (in particular independent of ε > 0) such that

‖(Qε,θ − z)−1‖L2→L2 ≤ C, z ∈ Ω.

Proof. Let χj ∈ C∞c ([0,∞)) be equal to 1 on [0, r0] and satisfy χj = 1 on suppχj+1,

j = 0, 1. Parametrizing Γθ by Fθ : [0,∞)t × Sn−1 → Γθ, Fθ(t, ω) = gθ(t)ω (with gθ
given in (2.6)) we define functions χhj ∈ C∞c (Γθ) as

χhj ◦ Fθ(t, ω) := χj(th), 0 < h ≤ 1.

In view of (2.10) and (2.13) we see that for h small enough

Qε,θ(1− χh1) = (−e−2iθ∆x − iεe2iθx2)(1− χh1)

= e−2iθHε,γ(1− χh1), γ := π/2− 4θ, x = tω.

In view of (3.3) we have

(1− χh2)e2iθ(Hε,γ − e2iθz)−1(1− χh2) = Oδ(1) : L2(Γθ)→ H2(Γθ), (3.6)

for

−δ < 2θ + arg z < 2π − γ − δ = 3π/2 + 4θ − δ, |z| > δ,

and in particular for z ∈ Ω. We stress that the bounds are independent of ε.

Noting that

(−∆θ − z)−1 = O(1) : L2(Γθ)→ H2(Γθ), z ∈ Ω, (3.7)
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(for 0 ≤ θ ≤ π/8, −2θ < arg z < 2π − 2θ) we now put

T hε,θ(z) := χh0(−∆θ − z)−1χh1 + (1− χh1)e2iθ(Hε,γ − e2iθz)−1(1− χh2),

so that (Qε,θ − z)T hε,θ(z) = I +Kh
ε,θ(z), where

Kh
ε,θ(z) :=− iεx2

θχ
h
0(−∆θ − z)−1χh1 − [∆θ, χ

h
0 ](−∆θ − z)−1χ1

+ [∆θ, χ
h
1 ]e2iθ(1− χh2)(Hε,γ − e2iθz)−1(1− χh2).

Since [∆θ, χ
h
j ] = O(h) : H1(Γθ) → L2(Γθ) and x2

θχ
h
1 = O(h−2) : L2(Γθ) → L2(Γθ), we

conclude from (3.6) and (3.7) that for z ∈ Ω,

Kh
ε,θ(z) = O(h−2ε) +O(h) : L2(Γθ)→ L2(Γθ).

Hence by choosing h first, we see that for ε < ε0(h), I + Kh
ε,θ(z) has a uniformly

bounded inverse and 0 ≤ ε < ε0

(Qε,h − z)−1 = T hε,θ(z)(I +Kh
ε,θ(z))−1 = O(1) : L2(Γθ)→ L2(Γθ), z ∈ Ω.

In view of Lemma 4 we know that for z ∈ Ω, (Qε,h − z)−1 exists for ε > ε0 and that

gives the bound for all values ε. �

4. Meromorphic continuation

In this section we will review the meromorphy of the resolvent RV (z), see (1.1), in

a way connecting it to the resolvent of Pε given in (1.4), ε ≥ 0. For that we define

Rε(z) = (−∆− iεx2 − z)−1, RV,ε(z) = (−∆− iεx2 + V − z)−1, ε ≥ 0. (4.1)

For ε > 0, these operators are meromorphic for z ∈ C as operators on L2. For ε = 0,

R0(z) is holomorphic in the sense of (1.1) on the double cover of C \ {0} when n is

odd and on the logarithmic cover when n is even – see for instance [DyZ2, §3.1]. We

are only concerned with continuation to arg z ≥ −π/4.

Let ρ ∈ C∞c (Rn; [0, 1]) be equal to 1 on a neighbourhood of suppV . We have

Lemma 6. For ε ≥ 0

z 7→ (I + V Rε(z)ρ)−1, −π/4 < arg z < 7π/4,

is a meromorphic family of operators on L2(Rn) for with poles of finite rank. Then

mε(z) :=
1

2πi
tr

∮
z

(I + V Rε(w)ρ)−1∂w(V Rε(w)ρ)dw, (4.2)

where the integral is over a positively oriented circle enclosing z and containing no

poles other than possibly z, satisfies

mε(z) =


1

2πi

∮
z
(w − Pε)−1dw, ε > 0

m(z), ε = 0,

(4.3)
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where m(z) is the multiplicity of the resonance z given by (1.2).

Proof. We recall the standard argument (see [DyZ2, §2.2, 3.2] and references given

there). For any δ > 0 and uniformly in ε ≥ 0,

Rε(z) = Oδ(1/|z|) : L2(Rn)→ L2(Rn), δ < arg z < 3π/2− δ, |z| > δ. (4.4)

This follows from self-adjointness for ε = 0 and from (3.3) for ε > 0.

For z in (4.4) and Qε := −∆− iεx2,

(Pε − z) = (Qε − z)(I +Rε(z)V )

= (I + V Rε(z)ρ)(I + V Rε(z)(1− ρ))(Qε − z).
(4.5)

Noting that

(I + V Rε(z)(1− ρ))−1 = I − V Rε(z)(1− ρ)

we obtain from (4.4) and (4.5) that

RV,ε(z) = Rε(z)(I + V Rε(z)ρ)−1(I − V Rε(z)(1− ρ)),

δ < arg z < 3π/2− δ, |z| � 1,
(4.6)

where for large |z|, I + V Rε(z)ρ is invertible by a Neumann series argument. Since

z 7→ V Rε(z)ρ is a holomorphic family of compact operators for −π/4 < arg z < 3π/4

(see Lemma 3 for the case ε > 0), z 7→ (I + V Rε(z)ρ)−1 is a meromorphic family

operators in the same range of z. (For ε > 0 the meromorphy is in fact valid for

z ∈ C – see [DyZ2, §C.4].) The formula (4.6) remains valid for that range of z with

boundedness on L2 for ε > 0. For ε = 0 we note that

(I − V R0(z)(1− ρ)) , (I + V R0(z))−1 : L2
comp → L2

comp, R0(z) : L2
comp → L2

loc,

and we obtain the meromorphic continuation of RV,0(z) : L2
comp → L2

loc. Arguing as in

the proof of [DyZ2, Theorem 3.23] we obtain the multiplicity formula (4.3). (This can

also seen using complex scaling as reviewed in the proof of Theorem 2 below.) �

5. Proof of convergence

The proof of convergence is based on Lemma 6 and on the following lemma in which

we use the complex variable techniques of §§2,3.

Lemma 7. For χ ∈ C∞c (Rn) consider

T χε (z) := χ(−∆− iεx2 − z)−1x2(−∆− z)−1χ, 0 < arg z < 3π/2. (5.1)

Then T χε continues to a holomorphic family of operators

T χε (z) : L2 → L2, −π/4 < arg z < 7π/4.
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If Ω b {z : −π/4 < arg z < 3π/2} then there exists C = CΩ,χ (independent of ε) such

that

‖T χε (z)‖L2→L2 ≤ C, z ∈ Ω, ε > 0. (5.2)

Proof. In the notation of (4.1) we see that for δ < arg z < 3π/2− δ, |z| > δ,

χ(Rε(z)−R0(z))χ = iεχRε(z)x2R0(z)χ,

where we note that, for in our range of z, R0(z)χ : L2 → e−cδ|x|L2 (by looking, for

instance at the explicit formulas for the resolvent, see [DyZ2, §3.1], or by conjugation

with exponential weights) and consequently x2R0(z)χ : L2 → L2. Hence

T χε (z) = − i
ε

(χRε(z)χ− χR0(z)χ). (5.3)

The right hand side is holomorphic for −π/4 < arg z < 5π/4 which provides holomor-

phic continuation of T χε (z), ε > 0.

We now use Lemmas 2 and 4. For that we choose r0 in the definition of Γθ large

enough so that suppχ ⊂ B(0, r0) and take θ = π/8. Then we have

T χε (z) = − i
ε

(
χ(Qε,θ − z)−1χ− χ(Q0,θ − z)−1χ

)
= χ(Qε,θ − z)−1x2

θ(Q0,θ − z)−1χ,
(5.4)

where, in the notation of (2.12), xθ := x|Γθ . We now note that for z ∈ Ω,

(Q0,θ − z)−1χ : L2(Γθ)→ e−cΩ|x|L2(Γθ). (5.5)

This can be seen by conjugation by exponential weights or by constructing a parametrix

for Q0,θ as in the proof of Lemma 4 and using the explicit properties of (−e−2iθ∆ −
z)−1 = e2iθR0(e2iθz). From this and Lemma 4 we obtain

‖(Qε,θ − z)−1x2
θ(Q0,θ − z)−1χ‖L2→L2 ≤ CΩ, z ∈ Ω.

Inserting this into (5.4) concludes the proof. �

We can now state a stronger version of Theorem 1 formulated using the projections

appearing in (4.2):

Theorem 2. Suppose that −π/4 < arg z < 5π/4 and that m(z) = m ≥ 0, where m(z)

is the multiplicity of the resonance of P := −∆ + V at z – see (1.2).

Then there exists ε0 and δ such that for 0 < ε ≤ ε0, Pε = −∆ + V − iεx2 has m

eigenvalues in D(z, δ):

tr Πε = m, Πε :=
1

2πi

∫
∂D(z,δ)

(ζ − Pε)−1dζ, Π2
ε = Πε, (5.6)

and for any χ ∈ C∞c (Rn),

χΠεχ ∈ C∞([0, ε0],L(L2(Rn), L2(Rn))). (5.7)
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Remarks. 1. Notation f ∈ C1([a, b]) means that f , and f ′ continuous in [a, b]; here

f ′(a), f ′(b) are the left and right derivatives of f at those points. By induction we

then define Ck([a, b]) and C∞([a, b]). In view of (1.5) we cannnot expect analytic

dependence on ε.

2. For χ ≡ 1 on suppV , m(z) = rankχΠ0χ and (5.7) shows the convergence of resonant

states in the case of simple resonances. As the proof shows a stronger statement is

obtained by using the complex scaled operators: for θ = π/8,

Πε,θ :=
1

2πi

∫
∂D(z,δ)

(ζ − Pε,θ)−1dζ, Pε,θ = −∆|Γθ − iε(x|Γθ)2 + V,

Πε,θ ∈ C([0, ε0);L1(L2(Γθ), L
2(Γθ))), Πε,θχ ∈ C∞([0, ε0);L1(L2(Γθ), L

2(Γθ))),

(5.8)

where Γθ is the deformation defined in (2.11).

Proof. We first note that (4.6) and Lemma 4 imply that for −π/4 ≤ −2θ < arg z <

2π − 2θ, ε ≥ 0,

(Pε,θ − z)−1 = (Qε,θ − z)−1(I + V Rε(z)ρ)−1(I − V (Qε,θ − z)−1(1− ρ)). (5.9)

Since z 7→ (Qε,θ − z)−1 is a holomorphic family in our range of z’s, the Gohberg-Sigal

theory – see [DyZ2, §C.4] – shows that the poles of (Pε,θ − z)−1 with arg z > −2θ are

independent of 0 ≤ θ ≤ π/8 and

tr
1

2πi

∮
(Pε,θ − ζ)−1dζ = tr

1

2πi

∮
(Pε − ζ)−1dζ, ε > 0.

If in the definition of Γθ we take r0 large enough so that suppχ ⊂ B(0, r0) then Lemmas

2 and 4 show that χΠε,θχ = χΠεχ.

Hence it is enough to prove (5.8). For that we note that in the notation of Lemma 7,

(I + V Rε(z)ρ)−1 − (I + V R0(z)ρ)−1 = iε(I + V Rε(z)ρ)−1T ρε (z)(I + V R0(z)ρ)−1

= Oz(ε‖(I + V Rε(z)ρ)−1‖L2→L2) : L2 → L2.

We can now apply the Gohberg–Sigal–Rouché theorem [DyZ2, Theorem C.9] to see

that the poles of (I + V R0(z)ρ)−1 and (I + V Rε(z)ρ)−1 coincide with multiplicities.

This and (5.9) prove the first statement in (5.8). The second statement follows from

differentiation and estimates similar to (5.5). �
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[HSV] M. Hitrik, J. Sjöstrand, and J. Viola, Resolvent Estimates for Elliptic Quadratic Differential

Operators, Analysis & PDE 6(2013), 181–196.

[Hu] W. Hunziker, Distortion analyticity and molecular resonance curves, Ann. Inst. H. Poincaré
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