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Abstract. We show how the presence of resonances close to the real axis implies

exponential lower bounds on the norm of the cut-off resolvent on the real axis.

In this note we establish exponential lower bounds on the scattering resolvent on the

real line. We show that these lower bounds can be understood in terms of resonances

close to the real axis.

To fix the concepts, consider a semiclassical Schrödinger operator on Rn:

P (h) = −h2∆ + V (x), x ∈ Rn, V ∈ C∞c (Rn;R), (1.1)

suppV ⊂ B(0, R0); V (0) = V0 > 0, V ′(0) = 0, V ′′(0) > 0;

x · V ′(x) ≤ 0 on {V ≤ V0}, x · V ′(x) < 0 on {V = V0} \ {0}.
(1.2)

Take R > R0 and define the cutoffs

χ = 1lB(0,R0), ψ = 1lB(0,R+1)\B(0,R−1) . (1.3)

Theorem 3 in §4 shows that for any R > R0 there exists a constant c > 0 independent

of h and E0(h) = V0 +O(h) such that

‖χ(P (h)− E0(h)± i0)−1χ‖L2→L2 ≥ exp(c/h), (1.4)

‖ψ(P (h)− E0(h)± i0)−1χ‖L2→L2 ≥ exp(c/h). (1.5)

A very general exponential upper bound corresponding to (1.4) was first proved by

Burq [Bu], with generalizations by Vodev [Vo], and more recently by Datchev [Da].

The lower bound is immediate from much easier arguments involving quasimodes. The

“non-trapping” upper bound (for R large enough)

‖ψ(P (h)− E0(h)± i0)−1ψ‖L2→L2 ≤ C0

h
, (1.6)

was again given by Burq [Bu] (with a log 1/h loss) and Vodev [Vo] – see [Da] for a

neat new proof.

It is (1.5) which seems to be the novel aspect. It shows that having a one sided

cutoff to the exterior of the interaction region cannot prevent exponential blow up of

the resolvent.

The method also applies to the case of Riemannan manifolds, (M, g), considered

recently by Rodnianski–Tao [RoTa] – see Fig. 1. In that case the support of V is
1
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Figure 1. Examples of manifolds for which the estimate (1.7) holds:

on the left a surface of revolution with two Euclidean ends to which

Theorem 4 applies directly; on the right a surface with one end to which a

modification of the same method applies (see [Ga]). The same examples

work in any dimension.

replaced in (1.3) by the set where the metric is different from the Euclidean metric,

and we obtain a sequence of λk →∞ such that

‖ψ(∆g − λk ± i0)−1χ‖L2(M)→L2(M) ≥ ec
√
λk . (1.7)

See Theorem 4 in §4 for details.

The reason behind these estimates is the presence of resonances close to real axis.

The resolvent

Rh(z) = (P (h)− z)−1 : L2(Rn)→ H2(Rn), z 6∈ [0,+∞),

has a meromoprhic continuation to the Riemann surface of
√
z for n odd, and to the

Riemann surface of log z for n even, as a family of operators L2
comp(Rn) → H2

loc(Rn),

see for example [DyZw] and references given there. Resonances, defined as the poles of

this continuation, replace discrete spectral data for problems on non-compact domains.

For the situations considered here, in particular for the case (1.1), Rellich’s theorem

(see [DyZw]) shows that there are no resonances on the positive real axis, that is, the

operators (P (h)− E ± i0)−1 are well-defined for E > 0.

Theorem 2 in §3 gives general lower bounds based on existence of resonances with

certain properties. It is then applied in Theorems 3 and 4 in §4 to obtain examples,

in particular of Riemannian manifolds with Euclidean ends.

The simple proofs here are based on previous work on scattering resonances, in

particular those by Bony–Michel [BoMi], Gérard–Martinez [GéMa], Helffer–Sjöstrand
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Figure 2. The potential V used in Theorem 1.

[HeSj2], Tang-Zworski [TaZw] and Nakamura–Stefanov–Zworski [NaStZw]. To make

the basic idea accessible, we present in §2 an elementary and self-contained one dimen-

sional example which captures the basic reason for (1.5); the argument of §2 does not

directly use resonances though it could be used to show their existence.
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2. An explicit example

The following one dimensional example shows the reasons for (1.5) in an explicit

setting:

Theorem 1. Let V ∈ C∞c (R) be a nonnegative potential satisfying the following con-

ditions (see Figure 2):

V (x) = V (−x), V (x) = x2 + 1 for x ∈ [−1, 1];

V (x) = 4− x for x ∈ [2, 3.5]; V (x) < 1 for x > 3; suppV ⊂ [−5, 5].
(2.1)

Put R0 = 4, fix R > 5, and define χ, ψ by (1.3). Then there exists c > 0 and families

E0(h) = 1 +O(h), u(h), f(h) ∈ C∞c (R) such that

(P (h)− E0(h))u = f, f = ψf ;

‖χu‖L2(R) = 1, ‖f‖L2(R) ≤ e−c/h.
(2.2)

Note that (2.2) implies (henceforth suppressing the dependence on h)

‖χRh(E0 ± i0)ψ‖L2→L2 ≥ ec/h, (2.3)

‖ψRh(E0 ± i0)χ‖L2→L2 ≥ ec/h. (2.4)

Indeed, since u ∈ C∞c and f = ψf , we have χu = χRh(E0 ± i0)ψf ; this shows (2.3).

The bound (2.4) follows since Rh(E0 ± i0)∗ = Rh(E0 ∓ i0).
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The key component of the proof of Theorem 1 is the existence of quasimodes for the

operator P − E0, namely functions that satisfy (P − E0)v = O(e−c/h):

Lemma 2.1. There exist h-dependent families E0 = E0(h) ∈ R, and v = v(r;h) ∈
C∞([−R,R]), such that E0 = 1 +O(h) and for some C, c > 0,

(P − E0)v = 0, ‖v‖L2(−3.5,3.5) ≥ C−1, ‖v‖H1
h({R−1<|x|<R}) ≤ Ce−c/h.

Here H1
h denotes the semiclassical Sobolev space where in the standard definition

Dx is replaced by hDx – see for instance [Zw1, §7.1, §8.3].

To derive Theorem 1 from Lemma 2.1, we take χ0 ∈ C∞c (−R,R) such that χ0 = 1

on [−(R− 1), R− 1] and put

u := αχ0v, f = (P − E0)u = α[P, χ0]v,

here the constant α = α(h) is chosen so that ‖χu‖L2 = 1 and we have |α| ≤ C. We

furthermore see that supp f ⊂ {R − 1 < |x| < R} and ‖f‖L2 ≤ e−c/h (the constant C

can be absorbed into the exponential by replacing c by a smaller constant and taking

h small enough).

The rest of this section contains the proof of Lemma 2.1. We take R̃(h) ≥ R, R̃(h) =

R+O(h), to be chosen at the end of this section in (2.15), and let v be an eigenfunction

of P on [−R̃(h), R̃(h)] with Dirichlet boundary conditions with eigenvalue E0 close to

the ground state 1+h of the quantum harmonic oscillator −h2∂2x+x2+1. The existence

of such eigenvalue is given by the following

Lemma 2.2. For h small enough and given R̃(h) ∈ [R,R + 1], there exists E0 ∈ R
and v ∈ C∞([−R̃(h), R̃(h)]) such that

(P − E0)v = 0, v(R̃(h)) = v(−R̃(h)) = 0;

‖v‖L2(−R̃(h),R̃(h)) = 1, ‖v‖H1
h(−R̃(h),R̃(h)) ≤ C, E0 = 1 + h+O(e−

1
10h ).

Proof. Define

v1(x) := h−1/4e−
x2

2h , x ∈ [−1, 1].

Note that, since P = −h2∂2x + x2 + 1 on [−1, 1], we have

(P − (1 + h))v1 = 0, x ∈ [−1, 1];

‖v1‖L2(−1/2,1/2) ≥ C−1, ‖v1‖H1
h({1/2<|x|<1}) ≤ Ce−

1
10h .

Now, take χ̃ ∈ C∞c (−1, 1) such that χ̃ = 1 on [−1/2, 1/2]. Then

‖χ̃v1‖L2 ≥ C−1, ‖(P − (1 + h))χ̃v1‖L2 ≤ Ce−
1

10h ,

and χ̃v1 satisfies the Dirichlet boundary conditions at ±R̃(h) (since it vanishes there).

Now, P − (1 + h) is self-adjoint on L2([−R̃(h), R̃(h)]) when Dirichlet boundary condi-

tions are imposed. Since the norm of its inverse is at least C−1e
1

10h , we see that this
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operator has an eigenvalue which is O(e−
1

10h ); we denote the corresponding eigenvalue

of P by E0 and the corresponding L2 normalized eigenfunction by v. Finally, to estab-

lish a bound on the H1
h norm of v it suffices to multiply the equation (P − E0)v = 0

by v and integrate by parts. �

Lemma 2.1 follows once we establish the following exponential bound on v:

‖v‖H1
h({3.5≤|x|≤R̃(h)}) ≤ Ce−c/h. (2.5)

We will show (2.5) for positive x; the case of negative x is handled similarly (since

V is even, v can be taken to be even as well). The main idea is the following: if v

is not exponentially large in 1/h near, say, x = 2 relative to its size on [3.5, R̃(h)],

then one expects v to give an approximate Dirichlet eigenfunction to the operator

P on [2, R̃(h)] with eigenvalue E0. However, then E0 has to satisfy a quantization

condition determined by the behavior of V on [2, R̃(h)]; since E0 = 1 + h + o(h), one

can choose R̃(h) to ensure that the quantization condition is not satisfied and thus

obtain a contradiction.

For f1, f2 ∈ C∞(R) we define the (semiclassical) Wronskian by

W (f1, f2) = f1 · h∂xf2 − f2 · h∂xf1,

and note that

h∂xW (f1, f2) = f2 · (P − E0)f1 − f1 · (P − E0)f2.

The interval [2, R] can be split into three regions where the behavior of v is different,

based on the sign of V (x)−1: the “elliptic” or classically forbidden region [2, 3), where

v will grow exponentially in h as x decreases, the neighborhood of the turning point

x = 3, and the “hyperbolic” region (3, R), where the equation (P (h) − E0)v = 0 has

two solutions which are bounded as h→ 0.

We start with the hyperbolic region, considering the phase function

Φ(x) :=

∫ x

4−E0

√
E0 − V (y) dy.

Note that Φ is well-defined on x ∈ [4−E0, R+1], since
√
E0 − V (y) =

√
y − (4− E0)

for y ∈ [4− E0, 3.5]; in fact, we have

Φ(x) =
2

3
(x− (4− E0))

3/2 for x ∈ [4− E0, 3.5]. (2.6)

Define now the following WKB solutions :

v±(x) := (E0 − V (x))−1/4e±
iΦ(x)
h , x ∈ [3.5, R + 1],

then we have uniformly in x ∈ [3.5, R + 1],

(P − E0)v±(x) = O(h2), W (v+, v−)(x) = −2i+O(h). (2.7)
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Denote

v(x) = (v1(x),v2(x)) := (W (v, v+)(x),W (v, v−)(x)),

then

v(x) =
v2(x) · v+(x)− v1(x) · v−(x)

W (v+, v−)(x)
, (2.8)

h∂xv(x) =
v2(x) · h∂xv+(x)− v1(x) · h∂xv−(x)

W (v+, v−)(x)
. (2.9)

Since (P − E0)v = 0, we have

h∂xW (v, v±) = −v · (P − E0)v± .

From (2.7) and (2.8) we see that for x ∈ [3.5, R + 1],

|∂xv(x)| ≤ Ch|v(x)|.

Therefore,

v(x) = v(3.5)(1 +O(h)), x ∈ [3.5, R̃(h)]. (2.10)

This and (2.8), (2.9) show that

‖v‖H1
h(3.5,R̃(h)) ≤ C|v(3.5)|. (2.11)

The final component of the proof is the following solution in the region [2, 3.5] which

describes the transformation from the hyperbolic to the elliptic region via the turning

point, and is exponentially decaying in the elliptic region. Since V (x) = 4− x in this

region, the solution is given by an Airy function, and its properties are as follows:

Lemma 2.3. There exists a solution w(x) to the equation (P−E0)w = 0 for x ∈ [2, 3.5]

such that ‖w‖H1
h(2,2.5)

≤ Ce−c/h for some constants C, c > 0 and(
w(x)

h∂xw(x)

)
= e

iπ
4

(
v+(x)

h∂xv+(x)

)
− e−

iπ
4

(
v−(x)

h∂xv−(x)

)
+O(h), x ∈ [3.25, 3.5]. (2.12)

Proof. The solution w is given by

w(x) = 2i
√
πh−1/6 Ai(h−2/3(4− E0 − x)),

and its properties follow from the following asymptotic formulæ for the Airy function

Ai as y → +∞:

Ai(y) =
y−1/4

2
√
π

exp
(
− 2

3
y3/2

)
(1 +O(y−3/2)),

Ai(−y) =
y−1/4√
π

(
sin
(2

3
y3/2 +

π

4

)
+O(y−3/2)

)
,

and similar formulæ for its derivatives, see for example [HöI–II, (7.6.20), (7.6.21)]. �
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We are now ready to finish the proof of (2.5). Since (P − E0)v = (P − E0)w = 0

on [2, 3.5], the Wronskian W (v, w) is constant on this interval. Using the estimates

‖v‖H1
h(2,2.5)

≤ C, ‖w‖H1
h(2,2.5)

≤ Ce−c/h, we see that

|W (v, w)| ≤ Ce−c/h.

Now, computing the same Wronskian at x = 3.5 and using (2.12), we get

W (v, w) = e
iπ
4 v1(3.5)− e

−iπ
4 v2(3.5) +O(h)|v(3.5)|,

It remains to prove that, for a certain choice of R̃(h) independent of E0, we have

|e
iπ
4 v1(3.5)− e

−iπ
4 v2(3.5)| ≥ C−1|v(3.5)|. (2.13)

Indeed, in this case |v(3.5)| ≤ Ce−c/h, which together with (2.11) gives (2.5).

Using (2.10), we rewrite (2.13) as follows:

|e
iπ
4 v1(R̃(h))− e

−iπ
4 v2(R̃(h))| ≥ C−1|v(R̃(h))|. (2.14)

Since v satisfies the Dirichlet boundary condition at R̃(h), we have

W (v, v±)(R̃(h)) = −E−1/40 e±
iΦ(R̃(h))

h · h∂xv(R̃(h)),

so that |v1(R̃(h))|, |v2(R̃(h))| ≥ C−1|v(R̃(h))| and

e−
iπ
4 v2(R̃(h))

e
iπ
4 v1(R̃(h))

= exp
(
− i

h

(
2Φ(R̃(h)) + πh/2

))
.

To prove (2.14), we choose R̃(h) = R +O(h), R̃(h) ≥ R, so that

min
j∈Z

∣∣Φ(R̃(h)) + (j + 1/4)πh
∣∣ ≥ πh

4
; (2.15)

this can be done independently of E0, since E0 = 1 + h+O(e−
1

10h ) and thus

Φ(R̃(h)) =

∫ 5

3−h

√
1 + h− V (y) dy +

√
1 + h(R̃(h)− 5) +O(e−

1
10h ).

3. A general argument

Suppose that P (h) is an operator satisfying the general assumptions of [NaStZw],

that is a black box self-adjoint operator, close to the Laplacian and having analytic

coefficients near infinity and with a barrier at energy V0. (A barrier separates the

interaction region from infinity – see (3.3) and Fig. 3). We assume that Rn \B(0, R0)

is contained in the “outside” of the black box and the trapped set at energy V0. We also

assume the Hilbert space on which the operator acts, H = HR0 ⊕ L2(Rn \B(0, R0), is

equipped with an involution u 7→ ū equal to complex conjugation on L2(Rn \B(0, R0))

and satisfying zu = z̄ū, z ∈ C. The abstract reality assumption on P (h) reads

P (h)u = P (h)u.
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(a) (b)

(c) (d)

Figure 3. Examples of one-dimensional potentials satisfying: (a) con-

dition (1.2) and hence (3.3) and (4.1); (b) conditions (3.3) and (4.1), but

not (1.2); (c) condition (3.3), but not (4.1); (d) neither (3.3) nor (4.1).

The dashed line corresponds to V0. In particular, examples (a) and (b)

satisfy the assumptions of Theorems 2 and 3.

An example to keep in mind is given by the operator

P (h) = −h2∆g + V : H2(Rn)→ L2(Rn),

where the measure on L2 is obtained from the Riemannian metric and H := L2(Rn).

The potential V (x) and the metric coefficients gij(x) are smooth, extend analytically

to Ω := {z ∈ Cn : |z| ≥ R1, | Im z| ≤ δ|z|}, and

gij(z)− δij → 0, V (z)→ 0, |z| → ∞, z ∈ Ω. (3.1)

The trapped set, KE, at energy E > 0 is then defined by

KE := {(x, ξ) ∈ Rn × Rn : p(x, ξ) = E, etHp(x, ξ) 6→ ∞, t→ ±∞}, (3.2)

where Hp :=
∑n

j=1 ∂ξjp · ∂xj − ∂xjp · ∂ξj and p(x, ξ) :=
∑n

i,j=1 g
ij(x)ξjξi + V (x).

The assumption on the interaction region in this case means that π(KV0) ⊂ B(0, R0).

The barrier assumption means that

p−1(V0) = KV0 ∪ ΣV0 , ΣV0 ∩KV0 = ∅, ΣV0 is closed. (3.3)

The more general black box setting allows obstacle problems and other geometric sit-

uations. However, the barrier assumption cannot be satisfied for connected manifolds

without having a nontrivial potential V .

We denote by Res(P (h)) the set of resonances of P (h) (in an h-independent neigh-

borhood of {Re z > 0, Im z > 0}).
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Theorem 2. Let P (h) satisfy the general assumptions above. Suppose that z0 =

z0(h) ∈ Res(P (h)), Re z0 = V0 +O(h), z0 is simple, and

| Im z0| = O(h∞), d(z0(h),Res(P (h)) \ {z0(h)}) > hN , (3.4)

for some N . Suppose that χ and ψ are given by (1.3) with R > R0. Then there exist

C0 > 0 and h0 such that for 0 < h < h0,

‖χ(P (h)− Re z0 − i0)−1χ‖H→H ≥
1

C0| Im z0|
, (3.5)

and

‖ψ(P (h)− Re z0 − i0)−1χ‖H→H ≥
1

C0

√
| Im z0|h

. (3.6)

Remark. As stated in the introduction, it is (3.6) that seems to be the novel aspect.

The presence of the square root is (morally) consistent with the results of [BuZw,

Lemma A.2] and of [DaVa, Theorem 2].

Proof. We only present the proof of (3.6). Using the involution u 7→ ū we define

(u ⊗ v)f := u〈f, v̄〉, where we use the inner product on the black box Hilbert space.

Since z0 is simple, we have

ψ(P (h)− z)−1χ =
ψu⊗ χu
z − z0

+ ψRz0(z, h)χ,

where u is the corresponding normalized resonant state and Rz0(z, h) is holomorphic

in

[Re z0 − hN ,Re z0 + hN ] + i(−hN ,∞).

From [NaStZw, (5.1)] and [BoMi, (1.12)] (or [NoZw, (8.18)]) we see that

‖χu‖H = 1 +O(h∞), u = χu+O(h∞)L2
loc
. (3.7)

Using the maximum principle as in [TaZw, Lemma 2] and the estimates on the

resolvent in [TaZw, Lemma 1] we see that

‖χRz0(Re z0, h)ψ‖H→H = O(h−M), (3.8)

for some M . Hence to obtain (3.6) we need to estimate

1

| Im z0|
‖ψu⊗ χu‖H→H =

‖ψu‖H‖χu‖H
| Im z0|

, (3.9)

from below.

To estimate ‖ψu‖H from below we write

0 = Im〈(P (h)− z0)u, 1lB(0,R+t) u〉H = Im〈P (h)u, 1lB(0,R+t) u〉H − Im z0‖ 1lB(0,R+t) u‖2H.
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Since P (h) is self-adjoint on H and acts as a symmetric second order operator on

C∞c (Rn \B(0, R0)), we obtain

Im z0‖ 1lB(0,R+t) u‖2H = − Im

∫
∂B(0,R+t)

ūN(x, hD)udS(x),

where N(x, hDx) is a first order semiclassical differential operator. For example, if

P (h) = −h2∆ + V , then N(x, hDx) = i(x/|x|) · hDx.

Since from (3.7), ‖ 1lB(0,R+t) u‖2H = 1 +Ot(h∞), we see that

1
3
| Im z0| ≤ h

∫ 2
3

1
3

∫
∂B(0,R+t)

|u||N(x, hDx)u|dS(x)dt

= h

∫
B(0,R+ 2

3
)\B(0,R+ 1

3
)

|u||N(x, hDx)u|dx

≤ C ′h

∫
B(0,R+1)\B(0,R)

|u|2dx ≤ C ′h‖ψu‖2H,

where we used the equation (P − z0)u = 0 and elliptic estimates to control the first

order term term N(x, hDx)u. This shows that

‖ψu‖H ≥
√
| Im z0|/Ch,

which combined with (3.8),(3.9) and (3.7) completes the proof of (3.6). �

4. A metric example

We start by using Theorem 2 to obtain a generalization of Theorem 1 to higher

dimensions and to more general potentials:

Theorem 3. Consider a Schrödinger operator P (h) = −h2∆ +V on L2(Rn) where V

satisfies (3.1) and (3.3). Suppose also that

KV0 = {(x0, 0)}, V ′(x0) = 0, V ′′(x0) > 0. (4.1)

Then there exists z0 satisfying the assumptions of Theorem 2 with

d(z0,Res(P (h)) \ {z0}) > h/C, | Im z0| < e−c0/h . (4.2)

In particular in the notation of (3.6),

‖ψ(P (h)− Re z0 ± i0)−1χ‖L2→L2 ≥ exp
c

h
, (4.3)

for 0 < h < h0 and some c > 0.

Proof. The existence of z0 follows from Corollary in [NaStZw, §5]. The reference

operator P ](h) there can be chosen as P ](h) = −h2∆ +V ](x), where V ](x) = V (x) in

a small neighbourhood of x0 where x0 is the only critical point and V ](x) > V (x0) + ε,

ε > 0, outside of that neighbourhood. Since the eigenvalue of P ](h) corresponding to
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the minimum V0 = V (x0) is separated from other eigenvalues by h/C (see for instance

[HeSj1] and references given there) the same corollary shows the separation from other

resonances. �

Remarks. 1. The condition (1.2) implies that (3.3) and (4.1) hold (since Hp(x ·ξ) > 0

on {p = V0} except at x = ξ = 0), but the converse is not true – see Figure 3.

2. When V is analytic and satisfies certain “well-in-the-island” hypotheses, Theo-

rem 3 follows from the work of Helffer–Sjöstrand [HeSj2] and under these stronger

assumptions Theorem 2 can then be proved in the same way using the earlier results

of Gérard–Martinez [GéMa] in place of the results of [NaStZw].

3. For P (h) = −h2∆ + V , and for E’s satisfying (4.1) (with V0 = E), a result of

Nakamura [Na, Proposition 4.1] and [NaStZw, Corollary, §5] show that

‖χ(P (h)− E − i0)−1χ‖L2→L2 ≤ Ch−q, |E − zj(h)| ≥ hq,

where q ≥ 1 and zj(h) are the resonances of P (h). Since the density of Re zj(h) satisfies

a Weyl law, this means that the bound is O(h−q), outside of a set of measure O(hq−n),

q > n.

The example in Theorem 3 can be used directly to obtain examples of resolvent

growth for asymptotically conic metrics of the type studied by Rodnianski–Tao [RoTa].

Theorem 4. Let (M, g) be the following Riemannian manifold:

M = Rx × Sn−1θ , g = dx2 + V (x)−1 dθ2, n > 1,

where dθ2 is the round metric on the sphere of radius 1 and V (x) ∈ C∞(R; (0,∞)) is

a function satisfying the assumptions of Theorem 3 and

V (x) =
1

x2
, |x| ≥ R0.

Put

χ(x) = 1l|x|<R0 , ψ(x) = 1lR−1<|x|<R+1, R > R0.

Then there exists a sequence λk →∞ such that

‖ψ(−∆g − λk ± i0)−1χ‖L2(M)→L2(M) ≥ exp(c
√
λk), (4.4)

for some constant c > 0.

Proof. In the (x, θ) coordinates, the Laplacian ∆g has the form

∆g = ∂2x −
(n− 1)V ′(x)

2V (x)
∂x + V (x)∆S.

Here ∆S is the Laplacian on Sn−1. For k ≥ 0, let Yk(θ) be (any) spherical harmonic of

order k, i.e. a smooth function on Sn−1 such that

(−∆S − k(k + n− 2))Yk = 0, ‖Yk‖L2(Sn−1) = 1,
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see for example [HöI–II, §17.2] for the spectrum of ∆S. Then for u(x) ∈ C∞(R) and

λ ∈ R, we have

−∆g(u(x)Yk(θ)) =
(
− ∂2x +

(n− 1)V ′(x)

2V (x)
∂x + k(k + n− 2)V (x)

)
u(x)Yk(θ).

Put hk :=
(
k(k + n− 2)

)−1/2
so that

h2k(−∆g − λ)(u(x)Yk(θ)) = (P (hk)− h2kλ)u(x)Yk(θ),

where

P (h) := −h2∂2x +
(n− 1)V ′(x)

2V (x)
h2∂x + V (x) .

Let R(λ) := (−∆g − λ)−1 for λ 6∈ [0,+∞). It follows that

R(λ) =
∑
k∈N

h2k(P (hk)− h2kλ)−1 ⊗ Πk : L2(M)→ L2(M),

L2(M) ' L2(R, V (x)−
n−1

2 dx)⊗ L2(Sn−1),
(4.5)

where Πk : L2(Sn−1) → L2(Sn−1)) is the orthogonal projection onto the space of

spherical harmonics of order k. The operator R(λ) : C∞c (M) → C∞(M) continues

meromorphically to Imλ ≤ 0, and (P (hk) − h2kλ)−1 : C∞c (R) → C∞(R) continues

meromorphically for each k. Hence (4.5) is valid for Imλ ≤ 0, with the operator

acting on C∞c (M) ' C∞c (R)⊗ C∞c (Sn−1).
Hence,

‖ψ(−∆g − λ± i0)−1χ‖L2(M)→L2(M) = ‖ψR(λ± i0)χ‖L2(M)→L2(M)

= sup
k∈N

h2k‖ψ(P (hk)− h2kλ± i0)−1χ‖L2
x→L2

x
,

where L2
x := L2(R, V (x)−

n−1
2 dx). We now apply Theorem 3 to P (hk) and put λk =

Re z0(hk)/h
2
k. The estimate (4.4) follows from (4.3). Theorem 3 applies to the operator

P (h) despite the presence of a first order term, as this term is of order O(h) in the

semiclassical calculus and thus does not affect the classical Hamiltonian flow Hp, and

the results of [NaStZw] and Theorem 2 apply to a wide class of semiclassical differential

operators including P (h). �
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[HeSj2] Bernard Helffer and Johannes Sjöstrand, Resonances en limite semiclassique, Bull. Soc.

Math. France, 114, no.24–25, 1986.
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