
Schloss Reisensburg

What are the residues of the resolvent of the

Laplacian on non-compact symmetric spaces?

Maciej Zworski

UC Berkeley

25 July 2006



This talk is based on an unpublished note from 1993



This talk is based on an unpublished note from 1993

and some discussions with Charlie Epstein.



This talk is based on an unpublished note from 1993

and some discussions with Charlie Epstein.

The meromorphic continuation of the resolvent using



This talk is based on an unpublished note from 1993

and some discussions with Charlie Epstein.

The meromorphic continuation of the resolvent using

a contour deformation in the energy parameter has



This talk is based on an unpublished note from 1993

and some discussions with Charlie Epstein.

The meromorphic continuation of the resolvent using

a contour deformation in the energy parameter has

since been carried out in great generality by



This talk is based on an unpublished note from 1993

and some discussions with Charlie Epstein.

The meromorphic continuation of the resolvent using

a contour deformation in the energy parameter has

since been carried out in great generality by

András Vasy and Rafe Mazzeo



This talk is based on an unpublished note from 1993

and some discussions with Charlie Epstein.

The meromorphic continuation of the resolvent using

a contour deformation in the energy parameter has

since been carried out in great generality by

András Vasy and Rafe Mazzeo in Sect.7 of



This talk is based on an unpublished note from 1993

and some discussions with Charlie Epstein.

The meromorphic continuation of the resolvent using

a contour deformation in the energy parameter has

since been carried out in great generality by

András Vasy and Rafe Mazzeo in Sect.7 of

J. Func. Anal. 228:311-368 (2005).



This talk is based on an unpublished note from 1993

and some discussions with Charlie Epstein.

The meromorphic continuation of the resolvent using

a contour deformation in the energy parameter has

since been carried out in great generality by

András Vasy and Rafe Mazzeo in Sect.7 of

J. Func. Anal. 228:311-368 (2005).That section



This talk is based on an unpublished note from 1993

and some discussions with Charlie Epstein.

The meromorphic continuation of the resolvent using

a contour deformation in the energy parameter has

since been carried out in great generality by

András Vasy and Rafe Mazzeo in Sect.7 of

J. Func. Anal. 228:311-368 (2005).That section

is nicely readable on its own.



This talk is based on an unpublished note from 1993

and some discussions with Charlie Epstein.

The meromorphic continuation of the resolvent using

a contour deformation in the energy parameter has

since been carried out in great generality by

András Vasy and Rafe Mazzeo in Sect.7 of

J. Func. Anal. 228:311-368 (2005).That section

is nicely readable on its own.

However the description of the residues in terms of



This talk is based on an unpublished note from 1993

and some discussions with Charlie Epstein.

The meromorphic continuation of the resolvent using

a contour deformation in the energy parameter has

since been carried out in great generality by

András Vasy and Rafe Mazzeo in Sect.7 of

J. Func. Anal. 228:311-368 (2005).That section

is nicely readable on its own.

However the description of the residues in terms of

finite dimensional representations and the connection



This talk is based on an unpublished note from 1993

and some discussions with Charlie Epstein.

The meromorphic continuation of the resolvent using

a contour deformation in the energy parameter has

since been carried out in great generality by

András Vasy and Rafe Mazzeo in Sect.7 of

J. Func. Anal. 228:311-368 (2005).That section

is nicely readable on its own.

However the description of the residues in terms of

finite dimensional representations and the connection

to the eigenspaces of the compact dual has not been



This talk is based on an unpublished note from 1993

and some discussions with Charlie Epstein.

The meromorphic continuation of the resolvent using

a contour deformation in the energy parameter has

since been carried out in great generality by

András Vasy and Rafe Mazzeo in Sect.7 of

J. Func. Anal. 228:311-368 (2005).That section

is nicely readable on its own.

However the description of the residues in terms of

finite dimensional representations and the connection

to the eigenspaces of the compact dual has not been

properly described (?).
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lth ring have multiplicity 2l + 1 (Watson 1918).
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This figure assumes the Riemann hypothesis!
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Motivation:

(a) Resonances for a finite volume hyperbolic surface:

they are confined to a horizontal strip and satisfy the

usual Weyl law (Selberg 1954, Müller 1992).
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(b) Resonances for an infinite volume surface with no

cusps: they are scattered all over the upper half-plane;

the counting function is bounded from above and

below by multiples of r2 (Guillope-Z 1997).



Motivation:

(b) When we count only in a strip the number of

resonances is bounded by a multiple of r1+δ, where δ is

the dimension of the limit set (Z 1999, Guillopé-Lin-Z

2004).
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Motivation:

(a) Resonances associated to two strictly convex

bodies: in every fixed strip, the resonances become

closer to points on the lattice as the real part

increases (Ikawa 1986, Gérard 1988).



Motivation:

(b) Resonances for a hyperbolic cylinder: all resonance

lie exactly on a lattice. The underlying dynamical

structure, exactly one hyperbolic closed orbit, is the

same in the two examples (Guillopé 1988).
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Let H2 be the unit disc in C, |z| < 1, with the metric

(1− |z|2)−2|dz|2.

The curvature is −4 and the Laplacian becomes

∆ = 4(1− |z|2)2DzDz̄ , Dz = −i∂z , Dz̄ = −i∂̄z .

The spaces L2(H2), Hs(H2) are considered with the

measure (1− |z|2)−2L(dz) where L(dz) is the Euclidean

measure on C.
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The spectrum of the Laplacian is absolutely

continuous and equal to [1,∞] so that the resolvent

(∆− s(2− s))−1 is bounded on L2(H2) for Re s > 1. We

want to show that

The operator (∆− s(2− s))−1 : L2
comp(H

2) → H2
loc(H

2)

is meromorphic for s ∈ C with simple poles

of rank 2k + 1 at s = −2k, k ∈ N0.

We should stress that the meromorphic continuation

of the resolvent is well known. Howover, rather than

to relay on special functions and explicit formulæ we

want to use analysis on symmetric spaces.
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∫
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∫
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The δ function is ‘non-euclidean’in the sense that

φ(z)=

∫
H2

φ(w)δz(w)(1− |w|2)−2L(dw) , φ ∈ C∞
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Hence we only need to study the case

G(λ, z, 0) =
1

4π

∫
R

(ζ2 − λ2)−1φζ(z)ζ tanh

(
πζ

2

)
dζ ,

φζ(z) =

∫
∂H2

e(iζ+1)〈z,b〉db.

Since

|〈z, b〉| ≤ d(z, 0),

the spherical function φζ(z) is entire in ζ for all z ∈ H2.
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we note that Γλ is homologous in C \ {λ, ζk}

Γ[
λ + Γk

λ

where Γλ
k consists of two small pos. oriented circles

around ∓i(2k + 1),and Γλ is a before.

The integral over Γ[
λ gives a holomorphic contribution.

The one over Γλ
k gives the singular part:

1

4π

∫
Γk

λ

(ζ2 − λ2)−1φζ(z)ζ tanh

(
πζ

2

)
dζ =

1

λ− ζk
2π−1ζ2

kφζk
(z) + π−1ζkφζk

(z).
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−1Gk ,

where G̃ is holomorphic near ζk and

Gk(z, w) =−
2

π
(2k + 1)2φ−i(2k+1)(g

−1
w z) ,

gw ∈ SU(1, 1), gw · 0 = w.

Using facts about spherical functions one can see that

Gk(w, z) =Gk(z, w) =ck

∫
∂H2

e−2k〈w,b〉e(2k+2)〈z,b〉db ,

where ck 6= 0.
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H2 = SL(2,R)/SO(2) .

Functions on H2 can be considered as

SO(2) right invariant functions on SL(2,R).

Thus, Gk(g, h) = ckφ−i(2k+1)(h
−1g), and we put

Gk = Gk(C
∞
0 (H2)) ⊂ C∞(H2) .

The rank of the pole is now given as the

dimension Gk.
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Since Gk acts by convolution, Gk is a representation of

SL(2,R), πk(h) : f(g) 7→ f(h−1g). We now check that

Gk =span {πk(g)φ−i(2k+1) : g ∈ SL(2,R)} ,

and Gk is irreducible.

The ‘Casimir element plus ρ/2, Ω, satisfies

πk(Ω) = (2k + 1)2.

The minimal K-type is 0.

This shows that the corresponding (g, K) module

is the finite dimensional representation of weight 2k.
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Another comment:

If we use the hyperboloid representation of the H2,

then the resonant states continue analytically to

spherical harmonics, that is to eigenfunctions of the

Laplacian on the compact dual.

Question:

What is the general pattern for symmetric spaces?


