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1. Introduction

The purpose of this expository note is to revisit Morawetz’s method [Mo72] for

obtaining a lower bound on the rate of exponential decay of waves for the Dirichlet

problem outside star-shaped obstacles, and to discuss the uniqueness of the sphere as

the extremizer of Ralston’s [Ra78] subsequent sharp lower bound.

The bound on the decay rate is essentially the same as lower bound on the distance

between scattering resonances, Res(O), and the real axis (minimal resonance width)

for the Dirichlet Laplacian outside an obstacle O. We refer to [DyZw] and [Zw17] for

background, definitions and pointers to the literature.

Except for §6, our note is an expanded version of Morawetz’s remarkable but not so

well known paper [Mo72]. In particular, we want to draw attention to the mysterious

inequality (1.5). There is a slight change of constants compared to [Mo72]: we were

not able to recover the bound (1.5) with 2d replaced by 3
2
d on the right hand side

[Mo72, Theorem 1]. That results in 1
4

rather than 1
3

in the lower bound on resonance

widths (1.1).

Theorem 1. Suppose that O ⊂ R3 is a star-shaped obstacle and let Res(O) denote

the set of scattering poles of the Dirichlet realization of −∆ on R3 \ O. Then

inf
λ∈Res(O)

| Imλ| > 1

4
diam (O)−1. (1.1)

The constant 1
4

in (1.1) is far from being optimal: using the scattering matrix,

Ralston [Ra78] showed that in any odd dimension

inf
λ∈Res(O)

| Imλ| ≥ 2 diam (O)−1, (1.2)

and this is optimal for the sphere in dimensions three and five – see below and §6. For

other geometric constants which take energy (that is, Reλ) into account, see Fernández

and Lavine [FeLa90].

Resonances for the unit sphere in Rn are given by the zeros of Hankel functions

H
(2)
`+n

2
−1(λ), each with multiplicity given by the dimension of the eigenspace of `(` +

1
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n−2) of the spherical Laplacian (thus 2`+ 1 when n = 3). When n is odd, these zeros

are given by the zeros of polynomials p`+n−3
2

(λ) where,

pk(λ) :=
k∑

m=0

(
i

2

)m
(m+ k)!

m!(m− k)!
λk−m,

see [Ta11, (9.19)] and also [St06].

One can show (and clearly see from Fig. 1) that for n = 3, 5 the resonance closest

to the real axis comes from solving p1(λ) = λ+ i = 0. That means that

inf
λ∈Res(BR(0,1))

| Imλ| = R−1 = 2 diam(BR(0, 1))−1, n = 3, 5, (1.3)

and Ralston’s bound (1.2) is optimal.
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Figure 1. Resonances for the sphere in three dimensions, see also

[St06]. For each spherical momentum ` they are given by solutions

of H
(2)

`+ 1
2

( λ) = 0 where H
(2)
ν is the Hankel function of the second kind

and order ν. Each zero appears as a resonance of multiplicity 2` + 1.

Highlighted are resonances corresponding to ` = 20.

Theorem 1 is a consequence of the following theorem, which is valid without the

assumption that O is star-shaped:

Theorem 2. Suppose that w solves

(−∆− λ2)w = 0, x ∈ R3 \ O, w|∂O = 0,

where O ⊂ B(0, d) is an arbitrary obstacle.

Assume in addition that w is outgoing in the sense that

w|Rn\B(0,d) = (R0(λ)f)|Rn\B(0,d), (1.4)
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for some f ∈ L2(B(0, d)), where R0(λ;x, y) = eiλ|x−y|

4π|x−y| is the integral kernel of the free

resolvent. Then

v(x) := e−iλ|x|w(x)

satisfies ∫
R3\O

1

r
|∂r(rv)|2dx ≤ 2d

∫
R3\O
|∂xv|2dx. (1.5)

2. Proof of Theorem 1

We first show how Theorem 2 implies Theorem 1. For that we first note that

e−iλr∆eiλr = e−iλr
(
∂2
r +

2

r
∂r

)
eiλr +

∆S2

r2
= −λ2 + 2iλ∂r +

2iλ

r
+ ∆

= −λ2 +
2iλ

r
∂rr + ∆.

Hence, if (−∆− λ2)w = 0 in R3 \ O and w|∂O = 0, then

−∆v =
2iλ

r
∂r(rv) (2.1)

for x ∈ E := R3 \O, and v|∂O = 0. Multiplying both sides of (2.1) by (rv̄)r and taking

real parts we obtain

−2 Imλ

∫
E
|(rv)r|2r−1dx = −Re

∫
E

∆v(rv̄)rdx

= −Re

∫
E
(∆vv̄ + ∆vr∂rv̄)dx

=

∫
E
|∂xv|2dx+

∫
E
(−Re ∆vr∂rv̄)dx.

(2.2)

We put F := ∂xv so that the second integrand on the right hand side is

−Re(∂x · F )(x · F̄ ) = −Re ∂x · (F (x · F̄ )) + ReF · ∂x(x · F̄ )

= −Re ∂x · (F (x · F̄ )− 1
2
x|F |2)− 1

2
|F |2.

(2.3)

Here we used the fact that F is a gradient to obtain the second equality:

Re ∂xv · ∂x(x · ∂xv̄) = Re
3∑

i,j=1

(∂xjv)∂xj(xi∂xi v̄) =
3∑
j=1

|∂xjv|2 + 1
2

3∑
i,j=1

xi∂xi(|∂xjv|2)

= −1
2
|∂xv|2 + 1

2
∂x · (x|∂xv|2)
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Returning to (2.2) and using (2.3) and the divergence theorem, we obtain

− 2 Imλ

∫
E
|(rv)r|2r−1dx

= 1
2

∫
E
|∂xv|2dx+ Re

∫
∂E

(n · ∂xv)(x · ∂xv)dσ − 1
2

∫
∂E

(x · n)|∂xv|2dσ,
(2.4)

where n is the outward (as far as O goes) pointing unit normal vector on ∂E (that is

inward pointing for E — hence the change of sign). Since v|∂E = 0, we have ∂xv = n∂νv,

where the normal derivative is defined by ∂νv := n · ∂xv; this shows that

− 2 Imλ

∫
E
|(rv)r|2r−1dx = 1

2

∫
E
|∂xv|2dx+ 1

2

∫
∂E

(x · n)|∂νv|2dσ, (2.5)

From Theorem 2 we obtain (assuming, as we may, that Imλ < 0),

2| Imλ|
∫
E
|(rv)r|2r−1dx ≤ 2| Imλ|diam(O)

∫
E
|∂xv|2dx,

which combined with (2.5) gives

1
2

∫
∂E

(x · n)|∂xv|2dσ ≤ 1
2
(4| Imλ|diam(O)− 1)

∫
E
|∂xv|2dx.

For a star-shaped obstacle we can choose the origin so that x · n ≥ 0 and hence the

left hand side is positive. This gives (1.1).

3. The key estimate

Suppose that

�u(t, x) = 0, (t, x) ∈ [0,∞)× R3, u(t, x) = 0, |x| < t− 2d. (3.1)

Then

Re

∫
t=d,r≤d

(rur + u)ūtdx+ 1√
2

∫
r=t,t≥d

(
t|ut + ur|2 + Re(ut + ur)ū

)
dσ

≤ 1
2
d

∫
t=d,r≤d

(|ux|2 + |ut|2)dx+ d

∫
r=t

|∂∗u|2dσ − lim inf
T→∞

∫
r=t=T

|u|2dS,
(3.2)

where |∂∗u| denotes the norm of the surface gradient. This inequality assumes bounds

needed to obtain (3.15) below. These bounds are certainly satisfied in the case of

u(t, x) = eiλ(|x|−t)v(x), |x| > d which will be the case to which (3.2) is applied.

Proof of (3.2). We start with the following energy identity (attributed to Protter in

[Mo72]): if

V := x∂x + t∂t,
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then

−Re�ū(V u+ u) = ∂x ·
(
−Re(V u+ u)ūx + 1

2
x(|ux|2 − |ut|2)

)
+ ∂t

(
Re(V u+ u)ūt + 1

2
t(|ux|2 − |ut|2)

)
,

(3.3)

where we use the convention � = −∂2
t + ∂2

x – see §5 for a derivation.

For u satisfying (3.1) we integrate both sides over the region bounded by

Γd ∪ Γ+
d,T ∪ Γ−d,T , Γd := {t = d, r ≤ d},

Γ+
d,T := {r = t, d ≤ t ≤ 1

2
T}, Γ−d,T := {r = T − t, 1

2
T ≤ t ≤ T},

(3.4)

see Figure 2.

x

t

t = d

t = T/2

t = T

r = d r = T/2

Γd
Γ+
d,T

Γ−d,T

Figure 2. Domain of integration.

The divergence theorem gives

F = Re

∫
Γd

(rur + u)ūt + 1
2
d(|ux|2 + |ut|2)dx

+ 1√
2

∫
Γ+
d,T

(
t|ut + ur|2 + Re(ut + ur)ū

)
dσ,

(3.5)

where F is the contribution from Γ−d,T (see (3.6)). The contribution from Γ+
d,T was

calculated as follows: the (Euclidean) outward normal is given by (er− et)/
√

2, where

e• are the usual unit vectors. Then, since r = t,

er · (−Re(V u+ u)ūx + 1
2
x(|ux|2 − |ut|2))− Re(V u+ u)ūt − 1

2
t(|ux|2 − |ut|2)

= −Re(tur + tut + u)ūr − Re(tur + tut + u)ūt

= −t|ut + ur|2 − Re(ut + ur)ū.
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We now calculate the left hand side of (3.5) noting that the normal vector to Γ−d,T is

(er + et)/
√

2:

er · (−Re(V u+ u)ūx + 1
2
x(|ux|2 − |ut|2)) + Re(V u+ u)ūt + 1

2
t(|ux|2 − |ut|2)

= −Re((T − t)ur + tut + u)ūr + Re((T − t)ur + tut + u)ūt + 1
2
T (|ux|2 − |ut|2)

= tRe(|ur|2 − 2utūr + |ut|2) + 1
2
T Re(−|ur|2 + 2urūt − |ut|2) + 1

2
T (|ux|2 − |ur|2)

= (t− 1
2
T )|ur − ut|2 + Re(ut − ur)ū+ 1

2
T (|ux|2 − |ur|2),

so that

F = F1 + F2, F2 := 1√
2

∫
Γ−d,T

Re(ut − ur)ūdσ,

F1 := 1√
2

∫
Γ−d,T

(
(t− 1

2
T )|ur − ut|2 + 1

2
T (|ux|2 − |ur|2)

)
dσ.

(3.6)

We start by estimating F2: since Re(ut − ur)ū = 1
2
(∂t − ∂r)|u|2 and dσ|r=−t+T =√

2(T − t)2dtdω, x = rω, we have (recalling that u = 0 for r < T − 2d at t = T ),

F2 = 1
2

∫ T

t=T
2

∫
S2

(∂t − ∂r)|u(t, rω)|2|r=T−t(T − t)2dωdt

= −
∫ T

2

s=0

∫
S2
∂s|u((T − s, sω)|2s2dωds

= −
∫
S2
|u(1

2
T, 1

2
Tω)|2(1

2
T )2dω + 2

∫ T
2

s=0

∫
S2
|u(T − s, sω)|2sdωdt

= −
∫
r=t= 1

2
T

|u|2dS + ET ,

(3.7)

where dS is the surface measure on the sphere defined by r = t = 1
2
T and

ET :=
√

2

∫
Γ−d,T

r−1|u|2dσ.

Noting that u = 0 for T − t = r < t− 2d we see that

Γ−d,T ∩ suppu ⊂
{

1
2
T ≤ t ≤ 1

2
T + d

}
. (3.8)

Thus, on the support of the integral defining ET , we have |r − T/2| ≤ d and hence

ET ≤
C

T

∫
Γ−d,T

|u|2dσ, (3.9)

and this can be estimated using (3.12) and (3.14) below. This shows that

lim
T→∞

ET = 0. (3.10)



WAVE DECAY FOR STAR-SHAPED OBSTACLES IN R3 7

We now turn to F1; using (3.8) again,

F1 ≤ 1√
2

∫
Γ−d,T

1
2
T (|ux|2 − |ur|2)dσ + 1√

2

∫
Γ−d,T

d|ur − ut|2dσ. (3.11)

Suppose now that w is another function satisfying (3.1): �w = 0 and w(t, x) = 0,

|x| < t− 2d. We claim that

1√
2

∫
Γ−d,T

|(∂t − ∂r)w|2dσ ≤
∫
t=d,r≤d

(|wx|2 + |wt|2)dx+ 1√
2

∫
Γ+
d,T

|∂∗w|2dσ, (3.12)

where |∂∗w| is the length of the tangential derivative – see (3.13). For this we use the

standard energy identity

−2 Re�ww̄t = ∂x · (−2 Rewxw̄t) + ∂t(|wx|2 + |wt|2)

which we integrate over the region bounded by the hypersurfaces in (3.4). That gives

(noting that the normals to Γ±d,T are (er ∓ et)/
√

2)

0 = −
∫
t=d,r≤d

(|wx|2 + |wt|2)dx− 1√
2

∫
Γ+
d,T

(
Re 2wrw̄t + (|wx|2 + |wt|2)

)
dσ

+ 1√
2

∫
Γ−d,T

(
−Re 2wrw̄t + (|wx|2 + |wt|2)

)
dσ

= −
∫
t=d,r≤d

(|wx|2 + |wt|2)dx− 1√
2

∫
Γ+
d,T

(
|(∂r + ∂t)w|2 + |wx|2 − |wr|2

)
dσ

+ 1√
2

∫
Γ−d,T

(
|(∂r − ∂t)w|2 + |wx|2 − |wr|2

)
dσ,

Since on Γ+
d,T ,

|∂∗w|2Γ+
d,T

= |(∂r + ∂t)w|2 + |wx|2 − |wr|2, (3.13)

we obtain (3.12).

We make one more observation: since w(t, (T − t)ω) vanishes for t > 1
2
T +d we have∫

Γ−d,T

|w|2dσ =
√

2

∫ 1
2
T+d

1
2
T

∫
S2
|w(t, (T − t)ω)|2(T − t)2dωdt

≤ Cd

∫ 1
2
T+d

1
2
T

∫
S2
|∂tw(t, (T − t)ω)|2(T − t)2dωdt

= Cd

∫
Γ−d,T

|(∂t − ∂r)w|2dσ.

(3.14)

Here we used the following inequality, which holds for f satisfying f(0) = 0 and g > 0:∫ d

0

|f(t)|2g(t)dt =

∫ d

0

∣∣∣∣∫ t

0

f ′(s)ds

∣∣∣∣2 g(t)dt ≤
∫ d

0
g(t)tdt

mint∈[0,d] g(t)

∫ d

0

|f ′(t)|2g(t)dt.



8 PETER HINTZ AND MACIEJ ZWORSKI

(We could compute the d-dependent constant but it does not matter as it disappears

in the limit (3.15).)

We now show that the first term on the right hand side of (3.11) goes to 0 as T →∞.

To see that we note that on Γ+
d,T ∩ {0 ≤ t− T

2
≤ d},

|ux|2 − |ur|2 =
1

|x|2
3∑
j=1

|xj∂xj+1
u− xj+1∂xju|2, x4 := x1, ∂x4 := ∂x1 .

Since the vector fields xj∂xj+1
− xj+1∂xj commute with �,

wj := xj∂xj+1
u− xj+1∂xju, j = 1, 2, 3,

solve �wj = 0 and has the same support properties as u. Hence to estimate the first

term in (3.11) we can use the estimates (3.12) and (3.14) with w = wj, noting that on

Γ−d,T ∩ suppu, |x| ∼ T :∫
Γ−d,T

T (|ux|2 − |ur|2)dσ ≤ Cd
T

3∑
j=1

∫
Γ−d,T

3∑
j=1

|wj|2dσ

≤ C ′d
T

3∑
j=1

∫
Γ−d,T

|(∂t − ∂r)wj|2dσ

≤ C ′d
T

3∑
j=1

(∫
Γd

√
2(|∂xwj|2 + |∂twj|2)dx+

∫
Γ+
d,T

|∂∗wj|2dσ

)
−→ 0, T →∞.

(3.15)

Combining this with (3.7), (3.10), (3.11) and using (3.12) (with w = u) to estimate

the second term on the right hand side of (3.11), we obtain (3.2). �

4. Proof of Theorem 2

We first show that if

u0 := R0(λ)f, f ∈ D′(R3), supp f ∈ B(0, d), λ ∈ C, (4.1)

then the solution of

�u = 0, u|t=0 = u0, ∂tu|t=0 = −iλu0 (4.2)

satisfies

suppu ⊂ {(t, x) : t < |x|+ d}. (4.3)

This ties the stationary definition of outgoing functions to the dynamical one.
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Proof of (4.3). The argument works of course for any odd n ≥ 3. We first note that

for a fixed f , λ 7→ u ∈ C(Rt;D′(Rn)) is a holomorphic function. Hence it is enough to

prove (4.3) for Imλ > 0 in which case û0(ξ) = (|ξ|2 − λ2)−1f̂(ξ). Then

u(t, x) =

(
cos t
√
−∆− iλsin t

√
−∆√
−∆

)
u0

=
1

(2π)n

∫
Rn
ei〈x,ξ〉

(
cos t|ξ| − iλsin t|ξ|

|ξ|

)
f̂(ξ)

|ξ|2 − λ2
dξ,

where the Fourier transform is meant in the sense of distributions (the integration

makes sense for more regular f ’s). We can now take the Fourier transform in t which

gives, for τ ∈ R,

Fu(τ, x) =
1

(2π)n

∫
Rn

∫
R
ei〈x,ξ〉e−iτt

(
cos t|ξ| − iλsin t|ξ|

|ξ|

)
f̂(ξ)

|ξ|2 − λ2
dt dξ

=
1

2(2π)n−1

∑
±

∫
Rn
ei〈ξ,x〉

f̂(ξ)

|ξ|2 − λ2
δ(τ ∓ |ξ|)(1∓ λ/|ξ|)dξ

=
1

2(2π)n−1

∑
±

∫
Sn−1

e±iτ〈ω,x〉
f̂(±τω)

τ 2 − λ2
(1− λ/τ)(±τ)n−1

+ dω

=
1

2(2π)n−1

∫
Sn−1

eiτ〈ω,x〉
f̂(τω)

τ + λ
τn−2dω,

where to get the last equality we crucially used the fact that n − 1 is even. The

expression for Fu(τ, x) shows that τ 7→ Fu(τ, x) is holomorphic for Im τ > − Imλ and

that, using the Paley–Wiener theorem for f ,

|Fu(τ, x)| ≤ C〈τ〉MeIm τ(|x|+d).

But then (4.3) follows from the Paley–Wiener theorem. �

Suppose now that w satisfies the assumptions of Theorem 2, in particular w =

R0(λ)f outside of B(0, d), and that v(x) := e−iλ|x|w(x). Let u0 be as in (4.1), with the

same f . If we solve the free wave equation

�U = 0, U |t=d = e−iλdu0, ∂tU |t=d = −iλe−iλdu0,

then (4.3) shows that U vanishes for |x| < t − 2d. Since eiλ(|x|−t)v(x) solves the wave

equation in R × {|x| > d} and it has the same initial data (at time t = d) as U in

|x| > d we conclude that

U(t, x) = eiλ(|x|−t)v(x), |x| ≥ t, t ≥ d, (4.4)
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by the finite speed of propagation property of solutions of the wave equation. Finally

we solve the free wave equation �u = 0 with initial conditions

u|t=d =


eiλ(|x|−d)v(x), |x| > d,

v(x), x ∈ E ∩ {|x| ≤ d},
0, x ∈ O,

∂tu|t=d =

{
−iλeiλ(|x|−d)v(x), |x| > d,

0, |x| ≤ d.

(4.5)

Since w|∂O = 0, we have u|t=d ∈ H1
loc(R3), ∂tu|t=d ∈ L2

loc(R3).

We now apply (3.2) to u(t, x). Since ut|t=d = 0 for |x| ≤ d the first term on the left

hand side of (3.2) vanishes. In the second term u(t, x) = eiλ(|x|−t)v(x) and dσ =
√

2dx.

Hence the left hand side of (3.2) is given by

L = 1√
2

∫
r=t,t≥d

(
t|ut + ur|2 + Re(ut + ur)ū

)
dσ =

∫
r>d

(r|vr|2 + Re vrv̄)dx

=

∫
r>d

(
r−1|(rv)r|2 − r−1|v|2 − Re vrv̄

)
dx

=

∫
r>d

(
r−1|(rv)r|2 − r−1|v|2 − 1

2
∂r|v|2

)
dx

=

∫
r>d

r−1|(rv)r|2dx−
∫
S2

∫ ∞
d

1
2
∂r(|v|2r2)drdω

=

∫
r>d

r−1|(rv)r|2dx+ 1
2

∫
r=d

|v|2dS − lim
R→∞

1
2

∫
r=R

|v|2dS.

(4.6)

The right hand side of (3.2) is

R = 1
2
d

∫
t=d,r≤d

(|ux|2 + |ut|2)dx+ d

∫
r=t

|∂∗u|2dσ − lim inf
T→∞

∫
r=t=T

|u|2dS

In view of (4.5) this is equal to

R = 1
2
d

∫
E∩{r≤d}

|vx|2dx+ d

∫
E∩{r≥d}

|vx|2 − lim
T→∞

∫
r=T

|v|2dS. (4.7)

Since (3.2) is L ≤ R we obtain∫
r>d

r−1|(rv)r|2dx+ 1
2

∫
r=d

|v|2dS

≤ 1
2
d

∫
E∩{r≤d}

|vx|2dx+ d

∫
E∩{r≥d}

|vx|2dx− 1
2

lim
R→∞

∫
r=R

|v|2dS

≤ 1
2
d

∫
E∩{r≤d}

|vx|2dx+ d

∫
E∩{r≥d}

|vx|2dx.

(4.8)
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On the other hand (by integration by parts similar to what we saw before)∫
E∩{r<d}

r−1|(rv)r|2dx =

∫
E∩{r<d}

(
r|vr|2 + 2 Re vrv̄ + r−1|v|2

)
dx

=

∫
E∩{r<d}

r|vr|2dx+

∫
r=d

|v|2dS −
∫
E∩{r<d}

r−1|v|2dx

≤ d

∫
E∩{r<d}

|vx|2dx+

∫
r=d

|v|2dS.

(4.9)

Adding 1
2

times this inequality to the inequality (4.8), we obtain

1
2

∫
E
r−1|(rv)r|2 dx ≤ d

∫
E
|vx|2 dx,

which implies (1.5).

5. Protter’s identity from a modern point of view

We now explain Protter’s identity (3.3) from the point of view presented by Dafermos

and Rodnianski [DaRo08, §4.1.1], see also [Dy11]. For that we put

g := −dt2 + dx2.

For u = u(t, x),

∇u = −∂tu et +∇xu,

and for a vector field V = Vt et + Vx (with Vx(t, x) tangent to t = t0),

div V = ∂tVt + divx Vx.

For two vector fields X and Y , we introduce

T∇u(X, Y ) = Re

[
g(X,∇u)g(Y,∇ū)− 1

2
g(X, Y )g(∇u,∇ū)

]
.

This defines a new vector field JX(u) with coefficients quadratic in ∇u by

g(JX(u), Y ) = T∇u(X, Y ).

If w = w(t, x) is a scalar function, one can more generally consider the modified current

JX,w(u) = JX(u) +
1

2

(
w∇|u2| − |u|2∇w

)
,

see for example [Sch13, §4.1]. We then have the following general identity:

div JX,w(u) = Re((X + w)u)�gū−
1

2
|u|2�gw + ReKX,w(∇u,∇ū),

KX,w :=
1

2
LXg −

1

4
trg(LXg)g + wg.

(5.1)

If we take X to be the scaling vector field

X := t∂t + x∂x,
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then

T∇u(X, Y ) = Re

〈([
|∂tu|2 ∂tu(∇xū)T

∂tu∇xū ∇xu⊗∇xū

]
− 1

2
(−|∂tu|2 + |∇xu|2)

[
−1 0

0 1

])[
Xt

Xx

]
,

[
Yt
Yx

]〉
= g(JX(u), Y ) =

〈[
−1 0

0 1

]
JX(u), Y

〉
,

and hence for X as above

JX(u) = Re

[
−t|∂tu|2 − ∂tux · ∇xū+ 1

2
t(|∂tu|2 − |∇xu|2)

(x · ∇xu)∇xū+ t∂tu∇xū+ 1
2
x(|∂tu|2 − |∇xu|2)

]
.

To compute KX = KX,0, we note that with ϕs(x, t) = (esx, est),

LXg = ∂sϕ
∗
sg|s=0 = 2g

and hence

KX =
1

2
LXg −

1

4
trg(LXg)g = g − 1

4
trg(2g) = −g.

Therefore, if we choose the modifier w = 1, then KX,w ≡ 0, �gw = 0, and JX,w(u) =

JX(u) + Reu∇ū, hence the identity (5.1) becomes

Re((X + 1)u)�gū = div JX,1(u),

which is exactly Protter’s identity (3.3).

6. The variation of the first resonance of the sphere

We deform B(0, 1) ⊂ R3 without changing the diameter and see the imaginary part

of the first resonance, −i, decreases. In other words, the sphere locally maximizes

Ralston’s bound (1.2) among obstacles of fixed diameter. This result suggests the

following

Conjecture. Suppose that O ⊂ R3 is a non-trapping obstacle. Then

inf
λ∈Res(O)

| Imλ| = 1, O ⊂ B(0, 1) =⇒ O = B(0, 1).

A resolution of this within the class of, say, convex obstacles would already be inter-

esting. At this stage we are not able to gauge the difficulty of this conjecture.

Complex scaling with large angles [SjZw91] justifies the following approach to the

variational problem. We choose a basis of resonant states corresponding to −i satisfy-

ing the following conditions:∫
Γθ

ui(z)uj(z)dz = δij, θ > π/2. (6.1)
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Here the integral is over the radially deformed contour (see [SjZw91, (3.16)]) which

starts far from the obstacle. Once θ > π/2 is large enough the integral is independent

of θ and we drop Γθ. We note that −∆θ is symmetric with respect to this quadratic

form.

We put h(r) := r−2er(r−1), the radial component of the resonant state correspond-

ing to the resonance at −i. As spherical harmonics we choose Xj = xj|S2 or explicitly

in spherical coordinates (θ, ϕ), 0 ≤ θ ≤ 2π, |ϕ| ≤ π/2, X1 = sinϕ, X2 = cosϕ sin θ,

X3 = sinϕ cos θ; thus
∫
S2 X

2
j dvolS2 = 4π

3
. With A to be determined using (6.1) we

then put

uj(r, θ, ϕ) = Ah(r)Xj(θ, ϕ).

We first note that
∫
uiujdz = 0 for i 6= j since we complex scale only in the radial

variable and the real valued functionsXj are orthogonal. Now, the integral of (h(r)Xj)
2

with respect to dz over Γθ, θ > π/2, is

4π

3

∫
h(r)r2dr =

4π

3

∫ ∞
1

r−2e2r(r − 1)2dr =
4π

3
(2r)−1e2r(r − 2)|∞1 =

2πe2

3
.

Here we can discard the contribution from infinity as we are evaluating the integral over

the rescaled contour on which e2r decays exponentially. This gives A−1 =
√

2πe2/3.

We denote by z = λ2 the “quantum resonance,” hence we are deforming z = −1 as

a Dirichlet eigenvalue of −∆θ. Since −∆θ is symmetric with respect to the quadratic

form in (6.1) we can use Hadamard’s formula – see [Gr10] for a review and references.

That shows that the first variation comes from eigenvalues of the matrix

Cij =

∫ π/2

−π/2

∫ 2π

0

C(θ, ϕ)∂ruj(1, θ, ϕ)∂rui(1, θ, ϕ) cosϕdθdϕ

=
3

2π

∫
S2
C XiXj dvolS2 ,

(6.2)

where C(θ, ϕ) is the normal variation of the obstacle. (The sign difference compared

to the standard formula is due to the fact that we are applying the formula to the

outside of the obstacle.) Full justification comes from a Grushin reduction for the

scaled operator and a perturbation formula – see [SjZw07].

If a variation does not increase the diameter of the obstacle we can assume that the

obstacles stay contained in B(0, 1). That corresponds to

C(θ, ϕ) ≤ 0. (6.3)

From (6.2) and (6.3), we see that∑
i,j

Cijξiξj =
3

2π

∫
S2
C 〈X, ξ〉2 dvolS2 , X := (X1, X2, X3),
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and it follows that C is negative semi-definite; if C is not identically zero, C is strictly

negative. We conclude that any deformation of the sphere which does not increase

the diameter moves the first resonance on the imaginary axis deeper into the complex

half-plane.

To conclude that no other resonance moves closer to the real axis we need to as-

sume a uniform non-trapping condition. Since a smooth deformation has to preserve

convexity for small values of the deformation parameter, [HaLe94] and [SjZw95] show

that resonances lie outside of cubic curves determined by the curvature of the obsta-

cle, with the constants in [SjZw95, (1.3)] depending smoothly on the obstacle. Hence

continuity of resonances in compact sets guarantees that all other resonances are at

distance more than one from the real axis.

7. Comparison of the results

Ralston’s proof of (1.2) uses certain monotonicity properties of the scattering matrix

for star-shaped obstacles O ⊂ Rn. His argument also allows for suitable perturbations

of the Euclidean metric in B(0, R).

-4 -2 2 4

-1.0

-0.8

-0.6

-0.4

-0.2

Figure 3. Resonance widths for star-shaped obstacles contained in

B(0, 1) ⊂ R3 obtained by various authors using various methods. Blue:

Ralston’s unconditional gap. Yellow: upper bound for the Fernandez–

Lavine gap (setting the inf in their equation (5.14) to be equal to R).

Green: the unconditional gap we prove in [HiZw17].

Fernandez and Lavine [FeLa90] also establish the absence of resonances in certain

regions below the real axis, see in particular [FeLa90, Theorem 5.3] for gaps for obstacle

scattering in R3 which are however weaker than (1.2). Since their methods are different

both from those of Ralston and Morawetz, we give a brief discussion of their results:

due to equation (5.14) in their paper, their gap becomes worse in particular when
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the inner radius of the obstacle (the largest ball contained in it) becomes small; the

largest possible value of α in (5.14) is thus obtained by replacing the infimum by the

constant R2. The bound for Imλ =: −η they obtain in their estimate (5.13) in terms

of Reλ =: κ is non-trivial unless

(2βκR)2 < 3, β = 1 +
e

2

(
1 +

2

κR

)1/2

,

which is the case for κR < 0.1353. As Reλ→∞, their bound becomes | Imλ| < 1
(2+e)R

,

1/(2 + e) ' 0.2119. The different bounds are illustrated in Fig. 3.
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