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Abstract. We consider the Kramers–Smoluchowski equation at a low temperature
regime and show how semiclassical techniques developed for the study of the Witten
Laplacian and Fokker–Planck equation provide quantitative results. This equation
comes from molecular dynamics and temperature plays the role of a semiclassical
paramater. The presentation is self-contained in the one dimensional case, with
pointers to the recent paper [15] for results needed in higher dimensions. One purpose
of this note is to provide a simple introduction to semiclassical methods in this
context.

1. Introduction

The Kramers–Smoluchowski equation describes the time evolution of the proba-
bility density of a particle undergoing a Brownian motion under the influence of a
chemical potential – see [1] for the background and references. Mathematical treat-
ments in the low temperature regime have been provided by Peletier et al [16] using
Γ-convergence, by Herrmann–Niethammer [11] using Wasserstein gradient flows and
by Evans–Tabrizian [5].

The purpose of this note is to explain how precise quantitative results can be ob-
tained using semiclassical methods developed by, among others, Bovier, Gayrard, Helf-
fer, Hérau, Hitrik, Klein, Nier and Sjöstrand [2, 7, 8, 9, 10] for the study of spectral
asymptotics for Witten Laplacians [17] and for Fokker–Planck operators. The semi-
classical parameter h is the (low) temperature. This approach is much closer in spirit
to the heuristic arguments in the physics literature [6, 13] and the main point is that
the Kramers–Smoluchowski equation is the heat equation for the Witten Laplacian
acting on functions. Here we give a self-contained presentation of the one dimensional
case and explain how the recent paper by the first author [15] can be used to obtain
results in higher dimensions.

Let ϕ : Rd → R be a smooth function. Consider the corresponding Kramers-
Smoluchowski equation: {

∂tρ = ∂x · (∂xρ+ ε−2ρ∂xϕ)
ρ|t=0 = ρ0

(1.1)

where ε ∈ (0, 1] denotes the temperature of the system and will be the small asymptotic
parameter. Assume that there exists C > 0 and a compact K ⊂ Rd such that for all
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Figure 1. A one dimensional potential with interesting Kramers–
Smoluchowski dynamics.

x ∈ Rd \K, we have

|∂ϕ(x)| ≥ 1

C
, |∂2

xixj
ϕ| ≤ C|∂ϕ|2, ϕ(x) ≥ C|x|. (1.2)

Suppose additionally that ϕ is a Morse function, that is, ϕ has isolated and non-
degenerate critical points. Then, thanks to the above assumptions the set U of critical
points of ϕ is finite. For p = 0, . . . , d, we denote by U (p) the set of critical points of
index p. Denote

ϕ0 := inf
x∈Rd

ϕ(x) = inf
m∈U(0)

ϕ(m) and σ1 := sup
s∈U(1)

ϕ(s). (1.3)

Thanks to (1.2), the sublevel set of σ1 is decomposed in finitely many connected com-
ponents E1, . . . , EN :

{x ∈ Rd, ϕ(x) < σ1} =
N⊔
n=1

En. (1.4)

We assume that

inf
x∈En

ϕ(x) = ϕ0, ∀n = 1, . . . , N, and ϕ(s) = σ1, ∀s ∈ U (1). (1.5)

which corresponds to the situation where ϕ admits N wells of the same height. In
order to avoid heavy notation, we also assume that for n = 1, . . . , N the minimum of
ϕ on En is attained in a single point that we denote by mn.

The associated Arrhenius number, S = σ1 − ϕ0, governs the long time dynamics of
(1.1). That is made quantitative in Theorems 1 below. More general assumptions can
be made as will be clear from the proofs. We restrict ourselves to the case in which
the asymptotics are cleanest.

To state the simplest result let us assume that d = 1 and that the second derivative
of ϕ is constant on the sets U (0) and U (1):

ϕ′′(m) = µ, ∀m ∈ U (0) and ϕ′′(s) = −ν, ∀s ∈ U (1) (1.6)
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for some µ, ν > 0. The potential then looks like the one shown in Fig.1. We introduce
the matrix

A0 =
κ

π



1 −1 0 0 . . . . . . . . . 0
−1 2 −1 0 . . . . . . . . . 0

0 −1 2 −1 0 . . . . . . 0
... 0 −1 2

. . . . . . . . . 0
...

...
. . . . . . . . . . . . . . . 0

...
...

. . . . . . . . . . . . −1 0

0
...

. . . . . . . . . −1 2 −1
0 0 . . . . . . . . . 0 −1 1


. (1.7)

with κ =
√
µν. This matrix is positive semi-definite with a simple eigenvalue at 0.

Theorem 1. Suppose that d = 1 and ϕ satisfies (1.2), (1.5) and (1.6). Suppose that

ρ0 =
( µ

2πε2

) 1
2

(
N∑
n=1

βn 1lEn + rε

)
e−ϕ/ε

2

, lim
ε→0
‖rε‖L∞ = 0, β ∈ RN , (1.8)

then the solution to (1.1) satisfies, uniformly for τ ≥ 0,

ρ(2ε2eS/ε
2

τ, x) →
N∑
n=1

αn(τ)δmn(x), ε→ 0, (1.9)

in the sense of distributions in x, where S = σ1−ϕ0 and where α(τ) = (α1, . . . , αn)(τ)
solves

∂τα = −A0α, α(0) = β, (1.10)

with A0 given by (1.7).

The above result is a generalization of Theorem 2.5 in [5] where the case of a double-
well is considered and estimates are uniform on compact time intervals only. We remark
that the equation considered in [5] has also an additional transverse variable (varying
slowly). A development of the methods presented in this note would also allow having
such variables. Since our goal is to explain general ideas in a simple setting we do not
address this issue here.

A higher dimensional version of Theorem 1 is given in Theorem 3 in §3. In this
higher dimensional setting, the matrix A0 becomes a graph Laplacian for a graph
obtained by taking minima as vertices and saddle points as edges. The same graph
Laplacian was used by Landim et al [14] in the context of a discrete model of the
Kramers–Smoluchowski equation.

Using methods of [5] and [2], Theorem 3 was also proved by Seo–Tabrizian [12], but
as the other previous papers, without uniformity in time (that is, with convergence
uniform for t ∈ [0, T ]).

Here, Theorem 1 is a consequence of a more precise asymptotic formula given in
Theorem 2 formulated using the Witten Laplacian. Provided that certain topological
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assumptions are satisfied (see [15, §1.1, §1.2]) an analogue of Theorem 1 in higher
dimensions is immediate – see §3 for geometrically interesting examples.

The need for the new results of [15] comes from the fact that in the papers on the low-
lying eigenvalues of the Witten Laplacian [2, 7, 8, 9, 10] the authors make assumptions
on the relative positions of minima and of saddle points. These assumptions mean
that the Arrhenius numbers are distinct and hence potentials for which the Kramers–
Smoluchowski dynamics (1.9) is interesting are excluded. With this motivation the
general case was studied in [15] and to explain how the results of that paper can be
used in higher dimensions we give a self-contained presentation in dimension one.

We remark that we need specially prepared initial data (1.8) to obtain results valid
for all times. Also, En’s in the statement can be replaced by any interval in En
containing the minimum. Theorem 2 also shows that a weaker result is valid for any
L2 data: suppose that ρ0 ∈ L2

ϕ := L2(eϕ(x)/ε2dx) and that

βn :=
( µ

2πε2

) 1
4

∫
En

ρ0(x)dx.

Then, uniformly for τ ≥ 0,

ρ(t, x) =
( µ

2πε2

) 1
4

N∑
n=1

αn((2ε2)−1e−S/ε
2

t) 1lEn(x)e−ϕ/ε
2

+ rε(t, x),

‖rε(t)‖L1(dx) ≤ C(ε
5
2 + ε

1
2 e−tε

2

)‖ρ0‖L2
ϕ
, L2

ϕ := L2(R, eϕ(x)/ε2dx).

(1.11)

where α solves (1.10). The proof of (1.11) is given at the end of §2.6.

Acknowledgements. We would like to thank Craig Evans and Peyam Tabrizian for
introducing us to the Kramers–Smoluchowski equation, and Insuk Seo for informing
us of reference [14]. The research of LM was partially supported by the European
Research Council, ERC-2012-ADG, project number 320845 and by the France Berkeley
Fund. MZ acknowledges partial support under the National Science Foundation grant
DMS-1500852.

2. Dimension one

In this section we assume that the dimension is equal to d = 1. That allows to
present self-contained proofs which indicate the strategy for higher dimension.

Ordering the sets En such that m1 < m2 < . . . < mN it follows that for all n =
1, . . . N − 1 Ēn ∩ Ēn+1 = {sn} is a maximum and we assume additionally that there
exists µn, νk > 0 such that for n = 1, . . . , N and k = 1, . . . , N − 1,

ϕ′′(mn) = µn and ϕ′′(sk) = −νk. (2.1)

Using this notation we define a symmetric N × N matrix: A0 = (aij)1≤i,j≤N , where
(with the convention that ν0 = νN = 0)

aii = π−1µ
1
2
j (ν

1
2
j−1 + ν

1
2
j ), ai,i+1 = −π−1ν

1
2
i µ

1
4
i µ

1
4
i+1, 1 ≤ i ≤ N − 1, (2.2)
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and ai,i+k = 0 , for k > 1, aij = aji. The matrix A0 is symmetric positive and the
eigenvalue 0 has multiplicity 1. When µj’s and νj’s are all equal our matrix takes the
particularly simple form (1.7).

First, observe that we can assume without loss of generality that ϕ0 = 0. Define the
operator appearing on the right hand side of (1.1) by

P := ∂x · (∂x + ε−2∂xϕ)

and denote

h = 2ε2.

Then, considering e±ϕ/h as a multiplication operator,

P = ∂x ◦ (∂x + 2h−1∂xϕ) = ∂x ◦ e−2ϕ/h ◦ ∂x ◦ e2ϕ/h

and

eϕ/h ◦ P ◦ e−ϕ/h = −h−2∆ϕ, ∆ϕ := −h2∆ + |∂xϕ|2 − h∆ϕ.

Hence, ρ is solution of (1.1) if u(t, x) := eϕ(x)/hρ(h2t, x) is a solution of

∂tu = −∆ϕu, u|t=0 = u0 := ρ0e
ϕ/h. (2.3)

In order to state our result for this equation, we denote

ψn(x) := cn(h)h−
1
4 1lEn(x)e−(ϕ−ϕ0)(x)/h, ∀n = 1, . . . , N, (2.4)

where cn(h) is a normalization constant such that ‖ψn‖L2 = 1. The method of steepest
descent shows that

cn(h) ∼
∞∑
k=0

cn,kh
k, cn,0 = (µn/π)

1
4 , ∀n = 1, . . . N. (2.5)

We then define a map Ψ : RN → L2 by

Ψ(β) :=
N∑
n=1

βnψn, ∀β = (β1, . . . , βN) ∈ RN . (2.6)

The following theorem describes the dynamic of the above equation when h→ 0.

Theorem 2. There exists C > 0 and h0 > 0 such that for all β ∈ RN and all
0 < h < h0, we have

‖e−t∆ϕΨ(β)−Ψ(e−tνhAβ)‖L2 ≤ Ce−
1
Ch |β|, ∀t ≥ 0, (2.7)

where νh = he−2S/h, S = σ1 − ϕ0, and A = A(h) is a real symmetric positive matrix
having a classical expansion A ∼

∑∞
k=0 h

kAk with A0 given by (2.2). In addition,

‖e−t∆ϕΨ(β)−Ψ(e−tνhA0β)‖L2 ≤ Ch|β| (2.8)

uniformly with respect to t ≥ 0.

We first show how
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Theorem 2 implies Theorem 1. First recall that we assume here µn = µ for all n =
1, . . . N and νk = ν for all k = 1, . . . N − 1. Suppose that ρ is the solution to (1.1)
with ρ0 as in Theorem 1. Then u(t, x) := eϕ(x)/hρ(h2t, x) is a solution of (2.3), that is
u(t) = e−t∆ϕu0 with

u0 = ρ0e
ϕ/2ε2 =

( µ

2πε2

) 1
2

(
N∑
n=1

βn 1lEn +rε

)
e−ϕ/2ε

2

=
( µ
πh

) 1
2

(
N∑
n=1

βn 1lEn +rh

)
e−ϕ/h

(2.9)

Since, cn(h) = (µ/π)
1
4 +O(h) it follows that

u0 = (µ/πh)
1
4 Ψ(β) + r̃h, r̃h =

(
O(h

1
2 ) + h−

1
2 rh

)
e−ϕ/h.

Since h−
1
2 e−ϕ/h = OL1(1), we have r̃h → 0 in L1 when h → 0. Hence, it follows from

(2.8) (Theorem 2) that

ρ(h2t, x) = e−ϕ(x)/hu(t, x) = e−ϕ(x)/he−t∆ϕ

(
(µ/πh)

1
4 Ψ(β) + r̃h

)
= e−ϕ(x)/h

(
(µ/πh)

1
4 Ψ(e−tνhA0β) + e−t∆ϕ r̃h +OL2(h)

)
With the new time variable s = tνh, we obtain

ρ(she2S/h, x) = e−ϕ(x)/h
(

(µ/πh)
1
4 Ψ(e−sA0β) + e−t∆ϕ r̃h +OL2(h)

)
(2.10)

and denoting α(s) = e−sA0β, we get

e−ϕ(x)/h(µ/πh)
1
4 Ψ(e−sA0β) = (µ/π)

1
4

N∑
n=1

αn(t)h−
1
2 cn(h)χn(x)e−2ϕ(x)/h.

On the other hand, h−
1
2χn(x)e−2ϕ(x)/h −→ (π/µ)

1
2 δx=mn , as h → 0, in the sense of

distributions. Since, cn(h) = (µ/π)
1
4 +O(h), it follows that

e−ϕ/h(µ/πh)
1
4 Ψ(e−sA0β) −→

N∑
n=1

αn(t)δx=mn (2.11)

when h→ 0. Moreover, since e−t∆ϕ is bounded by 1 on L2, then

‖h−
1
2 e−ϕ/he−t∆ϕ(rhe

−ϕ/h)‖L1 ≤ ‖rh‖L∞‖h−
1
4 e−ϕ/h‖2

L2 ≤ C‖rh‖L∞

and recalling that rh → 0 in L∞, we see that

e−ϕ(x)/h(e−t∆ϕ r̃h +OL2(h)) −→ 0 (2.12)

in the sense of distributions. Inserting (2.11) and (2.12) into (2.10) and recalling that
h = 2ε2, we obtain (1.9). �
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2.1. Witten Laplacian in dimension one. The Witten Laplacian is particularly
simple in dimension one but one can already observe features which play a crucial role
in general study. For more information we refer to [4, §11.1] and [7].

We first consider ∆ϕ acting on C∞c (R) and recall a supersymmetric structure which
is the starting point of our analysis:

∆ϕ = d∗ϕ ◦ dϕ (2.13)

with dϕ = e−ϕ/h ◦ h∂x ◦ eϕ/h = h∂x + ∂xϕ and d∗ϕ = −h∂x + ∂xϕ = −d−ϕ. From this
square structure, it is clear that ∆ϕ is non negative and that we can use the Friedrichs
extension to define a self-adjoint operator ∆ϕ with domain denoted D(∆ϕ). Moreover,
it follows from (1.2) that there exists c0, h0 > 0 such that for 0 < h < h0,

σess(∆ϕ) ⊂ [c0,+∞). (2.14)

Therefore, σ(∆ϕ) ∩ [0, c0) consists of eigenvalues of finite multiplicity and with no
accumulation points except possibly c0.

The following proposition gives a preliminary description of the low-lying eigenval-
ues.

Proposition 1. There exist ε0, h0 > 0 such that for any h ∈ (0, h0], ∆±ϕ has exactly
N eigenvalues 0 ≤ λ±1 ≤ λ±2 . . . ≤ λ±N in the interval [0, ε0h]. Moreover, for any ε > 0
there exists C such that

λ±n (h) ≤ Ce−(S−ε)/h, (2.15)

where S = σ1 − ϕ0.

Remark. The proof applies to any ϕ which satisfies the first two inequalities in (1.2).
If one assumes additionally that ϕ(x) ≥ C|x| for |x| large, then e−ϕ/h ∈ D(∆ϕ). Since
dϕ(e−ϕ/h) = 0 it follows that λ+

0 = 0.

Proof. This is proved in [4, Theorem 11.1] with h
3
2 in place of ε0h. The proof applies

in any dimension and we present it in that greater generality for ϕ satisfying

|∂ϕ(x)| ≥ 1

C
, |∂2

xixj
ϕ| ≤ C|∂ϕ|2.

The fact that there exists at least N eigenvalues in the interval [0, Ce−(S−ε)/h] is
a direct consequence of the existence of N linearly independent quasi-modes – see
Lemma 2 and (2.31) below.

To show that N is the exact number of eigenvalues in [0, ε0h) it suffices to find a N
dimensional vector space V and ε0 > 0 such that the operator ∆ϕ is bounded from
below by ε0h on V ⊥ – see for instance [18, Theorem C.15].

To find V we introduce a family of harmonic oscillators associated to minima m ∈
U (0) and obtained by replacing ϕ by its harmonic approximation in the expression for
∆ϕ:

Hm := −h2∆ + |ϕ′′(m)(x−m)|2 − h∆ϕ(m), m ∈ U (0).
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The spectrum of this operator is known explicitly, see [7, Sect 2.1] with the simple
eigenvalue 0 at the bottom. We denote by em the normalized eigenfunction, Hmem = 0.
The other eigenvalues of Hm are bounded from below by c0h for some c0 > 0.

Let χ ∈ C∞c (Rd; [0, 1]) be equal to 1 near 0 and satisfy (1 − χ2)
1
2 ∈ C∞(Rd). We

define χm(x) = χ((x − m)/
√
Mh) where M > 0 will be chosen later. For h small

enough, the functions χm have disjoint supports and hence the function χ∞ defined
by 1− χ2

∞ =
∑

m∈U(0) χ2
m is smooth. We define the N -dimensional vector space

V = span {χmem, m ∈ U (0)}.
The proof is completed if we show that there exist ε0, h0 > 0 such that

〈∆ϕu, u〉 ≥ ε0h‖u‖2, ∀u ∈ V ⊥ ∩D(∆ϕ), ∀h ∈]0, h0]. (2.16)

To establish (2.16) we use the following localization formula the verification of which
is left to the reader (see [4, Theorem 3.2]):

∆ϕ =
∑

m∈U(0)∪{∞}

χm ◦∆ϕ ◦ χm − h2
∑

m∈U(0)∪{∞}

|∇χm|2.

Since, ∇χm = O((Mh)−
1
2 ), this implies, for u ∈ D(∆ϕ), that

〈∆ϕu, u〉 = 〈∆ϕχ∞u, χ∞u〉+
∑

m∈U(0)

〈∆ϕχmu, χmu〉+O(hM−1‖u‖2). (2.17)

On the support of χ∞ we have |∇ϕ|2 − h∆ϕ ≥ (1 − O(h))|∇ϕ|2 ≥ c1Mh for some
c1 > 0, and hence

〈∆ϕχ∞u, χ∞u〉 ≥Mc1h‖χ∞u‖2 (2.18)

On the other hand, near any m ∈ U (0), |∇ϕ(x)|2 = |ϕ′′(m)(x−m)|2 +O(|x−m|3) and

ϕ′′(x) = ϕ′′(m) +O(|x−m|). Since on the support of χm we have |x−m| ≤
√
Mh,

it follows that
〈∆ϕχmu, χmu〉 = 〈Hmχmu, χmu〉+O((Mh)

3
2 ). (2.19)

We now assume that u ∈ D(∆ϕ) is orthogonal to χmem for all m. Then χmu is
orthogonal to em. Since the spectral gap of Hm is bounded from below by c0h, (2.19)
shows that

〈∆ϕχmu, χmu〉 ≥ c0h‖χmu‖2 +O((Mh)
3
2‖u‖2), ∀m ∈ U (0). (2.20)

Combining this with (2.17), (2.18) and (2.20) gives

〈∆ϕu, u〉 ≥ c0h
∑

m∈U(0)∪{∞}

‖χmu‖2 +O(hM−1‖u‖2) +O((Mh)
3
2‖u‖2)

≥ c0h‖u‖2 +O(hM−1‖u‖2) +O((Mh)
3
2‖u‖2).

Taking M large enough completes the proof of (2.16). �

We denote by E(0) the subspace spanned by eigenfunctions of these low lying eigen-
values and by

Π(0) := 1l[0,ε0h](∆ϕ) (2.21)
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the spectral projection onto E(0). This projector is expressed by the standard contour
integral

Π(0) =
1

2πi

∫
∂B(0,δε0h)

(z −∆ϕ)−1dz (2.22)

In our analysis, we will also need the operator ∆−ϕ, noting that in dimension one
∆−ϕ is the Witten Laplacian on 1-forms. Since −ϕ has exactly N − 1 minima (given
by the N − 1 maxima of ϕ), it follows from Proposition 1 that there exists ε1 > 0
such that ∆−ϕ has N −1 eigenvalues in [0, ε1h] and that these eigenvalues are actually
exponentially small. Observe that because of the condition ϕ(x) ≥ C|x| at infinity,
the function eϕ/h is not square integrable. Consequently, unlike in the case of ∆ϕ, we
cannot conclude that the lowest eigenvalue is equal to 0

We denote by E(1) the subspace spanned by eigenfunctions of these low-lying eigen-
functions of ∆−ϕ and by Π(1) the corresponding projector onto E(1),

Π(1) = 1l[0,ε1h](∆−ϕ). (2.23)

Similarly to (2.22), we have

Π(1) =
1

2πi

∫
∂B(0,δε1h)

(z −∆−ϕ)−1dz, (2.24)

for any 0 < δ < 1.

2.2. Supersymmetry. The key point in the analysis is the following intertwining
relations which follows directly from (2.13)

∆−ϕ ◦ dϕ = dϕ ◦∆ϕ (2.25)

and its adjoint relation

d∗ϕ ◦∆−ϕ = ∆ϕ ◦ d∗ϕ. (2.26)

From these relations we deduce that dϕ(E(0)) ⊂ E(1) and d∗ϕ(E(1)) ⊂ E(0). Indeed,
suppose that ∆ϕu = λu, with u 6= 0 and λ ∈ [0, ε0h]. Then, we see from (2.25) that

∆−ϕ(dϕu) = dϕ(∆ϕu) = λdϕu.

Therefore, either dϕu is null and obviously belongs to E(1) or dϕu 6= 0 and hence dϕu
is an eigenvector of ∆−ϕ associated to λ ∈ [0, ε0h]. This proves the first statement.
The inclusion d∗ϕ(E(1)) ⊂ E(0) is obtained by similar arguments.

By definition, the operator ∆ϕ maps E(0) into itself and we can consider its restriction
to E(0). From the above discussion we know also that dϕ(E(0)) ⊂ E(1) and d∗ϕ(E(1)) ⊂
E(0). Hence we consider L = (dϕ)|E(0)→E(1) and L∗ = (d∗ϕ)|E(1)→E(0) . When restricted

to E(0), the structure equation (2.13) becomes

M = L∗L with M := ∆ϕ|E(0) , L := (dϕ)|E(0)→E(1) . (2.27)
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2.3. Quasi-modes for ∆ϕ. Let δ0 = inf{diam(En), n = 1, . . . , N} and let ε > 0 be
small with respect to δ0. For all n = 1, . . . , N , let χn be smooth cut-off functions such
that  0 ≤ χn ≤ 1,

supp(χn) ⊂ {x ∈ En, ϕ(x) ≤ σ1 − ε}
χn = 1 on {x ∈ En, ϕ(x) ≤ σ1 − 2ε},

(2.28)

where ε > 0 will be chosen small (in particular much smaller than δ0 in (2.32)).
Consider now the family of approximated eigenfunctions defined by

f (0)
n (x) = h−

1
4 cn(h)χn(x)e−ϕ(x)/h, ‖f (0)

n ‖L2 = 1, (2.29)

where cn(h) = ϕ′′(mn)
1
4π−

1
4 +O(h). We introduce the projection of these quasi-modes

onto the eigenspace space E(0):

g(0)
n := Π(0)f (0)

n . (2.30)

Lemma 2. The approximate eigenfunctions defined by (2.29) satisfy

〈f (0)
n , f (0)

m 〉 = δn,m, ∀n,m = 1, . . . , N,

and
dϕf

(0)
n = OL2(e−(S−ε)/h), g(0)

n − f (0)
n = OL2(e−(S−ε′)/h)

for any ε′ > ε.

Proof. The first statement is a direct consequence of the support properties of the
cut-off functions χn and the choice of the normalizing constant. To see the second
estimate, recall that dϕe

−ϕ/h = 0. Hence

dϕf
(0)
n (x) = h

3
4 cn(h)χ′n(x)e−ϕ(x)/h.

Moreover, thanks to (2.28), there exists c > 0 such that for ε > 0 small enough we
have ϕ(x) ≥ S − ε for x ∈ supp(χ′n). Combining these two facts gives estimates on

dϕf
(0)
n .

We now prove the estimate on g
(0)
n − f (0)

n . We first observe that

∆ϕf
(0)
n = d∗ϕdϕf

(0)
n = h

3
4 cn(h)d∗ϕ(χ′ne

−ϕ/h) = h
3
4 cn(h)(−hχ′′n + 2∂xϕχ

′
n)e−ϕ/h

and the same argument as before shows that

∆ϕf
(0)
n = OL2(e−(S−ε)/h). (2.31)

From (2.22) and Cauchy formula, it follows that

g(0)
n − f (0)

n = Π(0)f (0)
n − f (0)

n =
1

2πi

∫
γ

(z −∆ϕ)−1f (0)
n dz − 1

2πi

∫
γ

z−1f (0)
n dz

=
1

2πi

∫
γ

(z −∆ϕ)−1z−1∆ϕf
(0)
n dz,

with γ = ∂B(0, δε0h), 0 < δ < 1. Since ∆ϕ is selfadjoint and σ(∆ϕ) ∩ [0, ε0h] ⊂
[0, e−1/Ch], we have for α > 0 small enough∥∥(z −∆ϕ)−1

∥∥ = O(h−1),
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uniformly for z ∈ γ. Using (2.31), we get
∥∥(z −∆ϕ)−1z−1∆ϕf

(0)
k

∥∥ = O
(
h−2e−(S−ε)/h),

and, after integration, ‖g(0)
k − f

(0)
k ‖ = O(h−1e−(S−ε)/h) = O(e−(S−ε′)/h), for any ε′ >

ε. �

2.4. Quasi-modes for ∆−ϕ. Since, ϕ and −ϕ share similar properties, the construc-
tion of the preceding section produces quasi-modes for ∆−ϕ. Eventually we will only
need quasi-modes localized near the maxima sk. Hence, let θk ∈ C∞c (R; [0, 1]) satisfy

supp θk ⊂ {|x− sk| ≤ δ0}, θk = 1 on {|x− sk| ≤
δ0

2
}. (2.32)

We take ε in the definition (2.28) small enough then for all k = 1, . . . N − 1, we have

θkχ
′
k = χ′k,+ and θkχ

′
k+1 = χ′k+1,− (2.33)

where χk,± are the smooth functions defined by

χk,+(x) =

{
χk(x) if x ≥ mk,

1 if x < mk,
χk,−(x) =

{
χk(x) if x ≤ mk,

1 if x > mk.

Moreover, we also have θkθl = 0 for all k 6= l. The family of quasi-modes associated to
these cut-off functions is given by

f
(1)
k (x) := h−

1
4dk(h)θk(x)e(ϕ(x)−S)/h, ‖f (1)

k ‖L2 = 1, (2.34)

where dk(h) = |ϕ′′(sk)|
1
4π−

1
4 +O(h) is the normalizing constant. Again, we introduce

the projection of these quasi-modes onto the eigenspace E(1):

g
(1)
k (x) := Π(1)f

(1)
k . (2.35)

Lemma 3. There exists α > 0 independant of ε such that the following hold true

〈f (1)
k , f

(1)
l 〉 = δk,l, ∀k, l = 1, . . . , N − 1,

d∗ϕf
(1)
k = OL2(e−α/h), g

(1)
k − f

(1)
k = OL2(e−α/h)

Proof. The proof follows the same lines as the proof of Lemma 2. �

2.5. Computation of the operator L. In this section we represent L in a suitable

basis. For that we first observe that the bases (g
(0)
n ) and (g

(1)
k ) are quasi-orthonormal.

Indeed, thanks to Lemmas 2 and 3, we have

〈g(0)
n , g(0)

m 〉 = δn,m +O(e−α/h), ∀n,m = 1, . . . , N

and

〈g(1)
k , g

(1)
l 〉 = δk,l +O(e−α/h), ∀k, l = 1, . . . , N − 1.

for some α > 0. We then obtain orthonormal bases of E(0) and E(1):

(g(0)
n )1≤n≤N

Gramm–Schmidt process−−−−−−−−−−−−−−→ (e(0)
n )1≤n≤N ,

(g
(1)
k )1≤k≤N−1

Gramm–Schmidt process−−−−−−−−−−−−−−→ (e
(1)
k )1≤n≤N−1.

(2.36)
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It follows from the approximate orthonormality above that the change of basis matrix

Pj from (g
(j)
n ) to (e

(j)
n ) satisfies

Pj = I +O(e−α/h) (2.37)

for j = 0, 1. To describe the matrix of L in the bases (e
(0)
n ) and (e

(1)
k ) we introduce a

N − 1×N matrix L̂ = (ˆ̀
ij) defined by

ˆ̀
ij = 〈f (1)

i , dϕf
(0)
j 〉. (2.38)

We claim that the matrices L and L̂ are very close. To see that we give a precise
expansion of L̂:

Lemma 4. The matrix L̂ defined by (2.38) is given by L̂ = (h/π)
1
2 e−S/hL̄ where L̄

admits a classical expansion L̄ ∼ Σ∞k=0h
kLk with

L0 =



−ν
1
4
1 µ

1
4
1 ν

1
4
1 µ

1
4
2 0 0 . . . 0

0 −ν
1
4
2 µ

1
4
2 ν

1
4
2 µ

1
4
3 0 . . . 0

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . 0

0 0 . . . 0 −ν
1
4
n−1µ

1
4
n−1 ν

1
4
n−1µ

1
4
n


. (2.39)

Proof. From (2.29) and (2.34), we have

ˆ̀
ij = 〈f (1)

i , dϕf
(0)
j 〉 = h−

1
2di(h)cj(h)

∫
R
θi(x)e(ϕ(x)−S)/hdϕ(χj(x)e−ϕ(x)/h)dx

= h
1
2di(h)cj(h)e−S/h

∫
R
θi(x)χ′j(x)dx.

Moreover, since supp θi ∩ suppχj = ∅ except for j = i or j = i + 1, it follows from
(2.33) that∫

R
θi(x)χ′j(x)dx = δi,j

∫
R
χ′i,+(x)dx+ δi+1,j

∫
R
χ′i,−(x)dx = −δi,j + δi+1,j. (2.40)

On the other hand, we recall that di(h) and cj(h) both have a classical expansion.

Together with the above equality, this shows that L̂ has the required form and it
remains to prove the formula giving L0. To that end we observe that

di(h)cj(h) = π−
1
2 ((|ϕ′′(si)|ϕ′′(mj))

1
4 +O(h)) = µ

1
4
j ν

1
4
i π
− 1

2 +O(h)

in the notation of (2.1). Combining this with (2.40) we obtain

ˆ̀
ij = h

1
2π−

1
2 e−S/hµ

1
4
j ν

1
4
i (−δi,j + δi+1,j +O(h))

which gives (2.39). �

Lemma 5. Let L be the matrix of L in the basis obtained in (2.36). There exists

α′ > 0 such that L = L̂+O(e−(S+α′)/h), where L̂ is defined by (2.38) and is described
in Lemma 4.
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Proof. It follows from (2.37) that

L = (I +O(e−α/h))L̃(I +O(e−α/h)) (2.41)

where L̃ = (˜̀
i,j) with ˜̀

i,j = 〈g(1)
i , dϕg

(0)
j 〉. Moreover, (2.25) implies that Π(1)dϕ =

dϕΠ(0). Using this identity and the fact that Π(0),Π(1) are orthogonal projections, we
have

〈g(1)
i , dϕg

(0)
j 〉 = 〈g(1)

i , dϕΠ(0)f
(0)
j 〉 = 〈g(1)

i ,Π(1)dϕf
(0)
j 〉 = 〈g(1)

i , dϕf
(0)
j 〉

= 〈f (1)
i , dϕf

(0)
j 〉+ 〈g(1)

i − f
(1)
i , dϕf

(0)
j 〉

But from Lemmas 2, 3 and the Cauchy-Schwarz inequality we get

|〈g(1)
i − f

(1)
i , dϕf

(0)
j 〉| ≤ Ce−(α+S−ε′)/h.

Since α is independent of ε′ which can be chosen as small as we want, it follows that
there exists α′ > 0 such that ˜̀

i,j = ˆ̀
i,j+O(e−(S+α′)/h). Combining this estimate, (2.41)

and the fact that ˆ̀
i,j = O(e−S/h), we get the announced result. �

It is now easy to describe M as a matrix:

Lemma 6. Let M be the matrix representation of M in the basis (e
(0)
n ). Then

M = he−2S/hA

where A is symmetric positive with a classical expansion A ∼
∑∞

k=0 h
kAk with A0 given

by (2.2).

Proof. By definition, M = L∗L and it follows from Lemma 4 and 5 that

L∗L = (L̂+O(e−(S+α′)/h))∗(L̂+O(e−(S+α′)/h)) = he−2S/h(L̄∗L̄+O(e−α
′/h))

Then, A := h−1e2S/hL∗L is clearly positive and admits a classical expansion since L̄
does. Moreover, the leading term of this expansion is L̄∗0L̄0 and a simple computation
shows that L̄∗0L̄0 = A0, where A0 is given by (2.2). �

Remark. Innocent as this lemma might seem, the supersymmetric structure, that is
writing −∆ϕ|E(0) using dϕ, is very useful here.

Lemma 7. Denote by µ1(h) ≤ . . . ≤ µk(h) the eigenvalues of A(h). Then,

µ0(h) = 0 and µk(h) = µ0
k +O(h), ∀k ≥ 2,

where 0 = µ0
1 < µ0

2 ≤ µ0
3 ≤ . . . ≤ µ0

N denote the eigenvalues of A0. Moreover,

a normalized eigenvector associated to µ0
1 is ξ0 = N−

1
2 (1, . . . , 1) and there exists a

normalized vector ξ(h) ∈ ker(A(h)), such that

ξ(h) = ξ0 +O(h). (2.42)
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Proof. Many of the statements of this lemma are immediate consequence of Lemma
6. We emphasize the fact that 0 belongs to σ(A) since 0 ∈ σ(∆ϕ). The fact that ξ0

is in the kernel of A0 is a simple computation. Eventually, for any ξ ∈ ker(A(h)), we
have

ξ − 〈ξ, ξ0〉ξ0 =
1

2iπ

(∫
γ

z−1ξdz −
∫
γ

(A0 − z)−1ξdz
)

=
1

2iπ

∫
γ

(A0 − z)−1z−1A0ξdz

where γ is a small path around 0 in C. Since A0ξ = O(h) we obtain (2.42). �

2.6. Proof of Theorem 2. Let u be solution of (2.3) with u0 = Ψ(β), |β| ≤ 1 (see

(2.4),(2.6) and (2.29) for definitions of ψn, Ψ and f
(0)
n , respectively). Then,

u = e−t∆ϕΠ(0)u0 + e−t∆ϕΠ̂(0)u0

= e−tMΠ(0)u0 + e−t∆ϕΠ̂(0)u0, Π̂(0) := I − Π(0).
(2.43)

Since 1lEn −χn is supported near {sn−1, sn}, then ψn − f
(0)
n = OL2(e−α/h), for all

n = 1, . . . , N , and it follows that

u0 = ū0 +OL2(e−α/h), ū0 :=
N∑
n=1

βnf
(0)
n .

Then, using Lemma 2 and (2.37), we get u0 = ũ0 +OL2(e−α/h) with ũ0 :=
∑N

n=1 βne
(0)
n ,

where e
(0)
n is the orthonormal basis of E(0) given by (2.36). Since Π(0)e

(0)
n = e

(0)
n and

Π̂(0)e
(0)
n = 0, we have

u(t) = e−tMũ0 +OL2(e−α/h).

If M is the matrix of the operator M in the basis (e
(0)
n ) then

u(t) =
N∑
n=1

(e−tMβ)ne
(0)
n +OL2(e−α/h).

Going back from e
(0)
n to ψn as above, we see that

u(t) =
N∑
n=1

(e−tMβ)nψn +OL2(e−α/h) = Ψ(e−tMβ) +OL2(e−α/h) (2.44)

and the proof of (2.7) (main statement in Theorem 2) is complete. We now prove
(2.8). Since the linear map ψ : CN → L2(dx) is bounded uniformly with respect to
h, and thanks to (2.7), the proof reduces to showing (after time rescaling) that there
exists C > 0 such that for all β ∈ RN ,

|e−τA − e−τA0| ≤ Ch, ∀τ ≥ 0 (2.45)
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Since, by Lemma 7, A and A0 both have 0 as a simple eigenvalue with the approximate
eigenvector given by (1, · · · , 1), we see that for any norm on CN ,

|e−τA − e−τA0 | ≤ |e−τA0|{(1,··· ,1)}⊥ |I − e−τO(h)|`2→`2 + Ch

≤ Ce−cττh+ Ch = O(h).

which is exactly (2.45). �

We now prove one of the consequences of Theorem 2.

Proof of (1.11). We have seen in the preceding proof that e
(0)
n −ψn = OL2(e−C/ε

2
) and

since

‖ψn − (µ/2πε2)
1
4 1lEn e

−ϕ/2ε2‖L2 = O(ε2),

it follows that Π(0)u0 = ψ(β) +O(ε2‖u0‖L2) with β ∈ CN given by

βn = ( µ
2πε2

)
1
4

∫
En

u0(x)e−ϕ(x)/2ε2dx = ( µ
2πε2

)
1
4

∫
En

ρ0(x)dx.

Applying 2 (second part of Theorem 2) with h = 2ε2 gives

e−t∆ϕΠ(0)u0 =
N∑
n=1

(e−tνhA0β)n( µ
2πε2

)
1
4 1lEn e

−ϕ/2ε2 +OL2(ε2)‖u0‖L2 . (2.46)

On the other hand, Proposition 1 shows that

e−t∆ϕ(I − Π(0))u0 = OL2(e−tε
2/C)‖u0‖L2 . (2.47)

Since ρ(h2t) = e−ϕ/hu(t), (2.46) and (2.47) yield

ρ(2ε2eS/ε
2

τ) =
N∑
n=1

(e−τA0β)n( µ
2πε2

)
1
4 1lEn e

−ϕ/ε2 + rε(τ) (2.48)

with

rε(τ) = e−ϕ/2ε
2
(
OL2(e−cτe

S/ε2

) +OL2(ε2)
)
‖ρ0‖L2

ϕ
.

By Cauchy-Schwartz it follows that ‖rε(τ)‖L1 ≤ C(ε
5
2 + e−cτe

S/ε2

)‖ρ0‖L2
ϕ
. �

3. A higher dimensional example

The same principles apply when the wells may have different height and in higher
dimensions. In both cases there are interesting combinatorial and topological (when
d > 1) complications and we refer to [15, §1.1, §1.2] for a presentation and references.
To illustrate this we give a higher dimensional result in a simplified setting.

Suppose that ϕ : Rd → R is a smooth Morse function satisfying (1.2) and denote by
U (j) the finite sets of critical points of index j, nj := |U (j)|. We assume that (1.5) holds
and write S := σ1 − ϕ0. In the notation of (1.4) we have n0 = N and we also assume
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X X
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X

X

Figure 2. Left: The sublevel set {ϕ < σ1} (dashed region) associated
to a potential ϕ (1.5). The x’s represent local minima, the o’s, local
maxima. Right: The graph associated to the potential on the left.

that each En contains exactly one minimum. Hence we can label the components by
the minima:

∀n = 1, . . . , N, ∃ !m ∈ En, min
x∈En

ϕ(x) = ϕ(m)

and we denote E(m) := En. Since ϕ is a Morse function,

∀m,m′ ∈ U (0), m 6= m′ =⇒ Ē(m) ∩ Ē(m′) ⊂ U (1),

∀ s ∈ U (1), ∃ !m,m′ ∈ U (0), s ∈ Ē(m) ∩ Ē(m′).
(3.1)

To simplify the presentation we make an addition assumption

∀m,m′ ∈ U (0), m 6= m′ =⇒ |Ē(m) ∩ Ē(m′)| ≤ 1. (3.2)

Under these assumptions, the set U (0) × U (1) defines a graph G. The elements of U (0)

are the vertices of G and elements of U (1) are the edges of G: s ∈ U (1) is an edge
between m and m′ in U (0) if s ∈ Ē(m) ∩ E(m′) – see Fig.2 for an example.

The same graph has been constructed in [14] for a certain discrete model of the
Kramers–Smoluchowski equation.

We now introduce the discrete Laplace operator on G, MG – see [3] for the background
and results about MG. If the degree d(m) is defined as the number of edges at the
vertex m, MG is given by the matrix (am,m′)m,m′∈U(0) :

am,m′ =

 d(m), m = m′

−1 m 6= m′, Ē(m) ∩ Ē(m′) 6= ∅,
0 otherwise

(3.3)

Among basic properties of the matrix MG, we recall:

- it has a square structure MG = L∗L, where L is the transpose of the incidence
matrix of any oriented version of the graph G. In particular, MG is symmetric
positive.

- thanks to (1.5) and [15, Proposition B.1], the graph G is connected.
- 0 is a simple eigenvalue of MG
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We make one more assumption which is a higher dimensional analogue of the hy-
pothesis in Theorem 1: there exist µ, ν > 0 such that

detϕ′′(m) = µ, ∀m ∈ U (0)

λ1(s)2

detϕ′′(s)
= −ν, ∀s ∈ U (1),

(3.4)

where λ1(s) is the unique negative eigenvalue of ϕ′′(s). Assumptions (3.2) and (3.4)
can be easily removed. Without (3.4) the graph G is replaced by a weighted graph with
a weight function depending explicitly of the values of ϕ′′ at critical points. Removing
(3.2) leads to multigraphs in which there may be several edges between two vertices.
This can be also handled easily.

Assumption (1.5) however is more fundamental and removing it results in major
complications. We refer to [15] for results in that situation. Here we restrict ourselves
to making the following

Remark. Under the assumption (1.5) the proof presented in the one dimensional case
applies with relatively simple modifications. The serious difference lies in the descrip-
tion of E(1), the eigenspace of ∆ϕ on one-forms, in terms of exponentially accurate
quasi-modes (in one dimension it was easily done using Lemma 3). That description
is however provided by Helffer–Sjöstrand in the self contained Section 2.2 of [9] – see
Theorem 2.5 there. The computation of (2.38) becomes more involved and is based on
the method of stationary phase – see Helffer–Klein–Nier [8, Proof of Proposition 6.4].

The analogue of Theorem 1 is

Theorem 3. Suppose that ϕ satisfies (1.2),(1.5),(3.2) and (3.4). If

ρ0 =
( µ

2πε2

) 1
2

(
N∑
n=1

βn 1lEn + rε

)
e−ϕ/ε

2

, lim
ε→0
‖rε‖L∞ = 0, β ∈ RN , (3.5)

then the solution to (1.1) satisfies, uniformly for τ ≥ 0,

ρ(2ε2eS/ε
2

τ, x) →
N∑
n=1

αn(τ)δmn(x), ε→ 0, (3.6)

in the sense of distributions in x, where α(t) = (α1, . . . , αn)(τ) solves

∂τα = −κMGα, α(0) = β, (3.7)

with MG is given by (3.3) and κ = π−1µ
1
2ν

1
2 with µ and ν in (3.4).

We also have the analogue of (1.11) for any initial data.

As in the one dimensional case this theorem is a consequence of a more precise
theorem formulated using the localized states

ψn(x) = cn(h)h−
d
4 1lEn(x)e−(ϕ−ϕ0)(x)/h, (3.8)
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where cn(h) is a normalization constant such that ‖ψn‖L2 = 1. We then define a map
Ψ : RN → L2(Rd) by

Ψ(β) =
N∑
n=1

βnψn, ∀β = (β1, . . . , βN) ∈ RN . (3.9)

We have the following analogue of Theorem 2.

Theorem 4. Suppose ϕ satisfies (1.2),(1.5),(3.2) and (3.4). There exists C > 0 and
h0 > 0 such that for all β ∈ RN and all 0 < h < h0, we have

‖e−t∆ϕΨ(β)−Ψ(e−tκνhAβ)‖L2 ≤ Ce−1/Ch, t ≥ 0,

where νh = he−2S/h, κ = π−1µ
1
2ν

1
2 and A = A(h) is a real symmetric positive matrix

having a classical expansion A ∼
∑∞

k=0 h
kAk and A0 = MG with MG the Laplace matrix

defined by (3.3).

+

+

+

+

+

+

+

+
m1

m2

m3

mN

mN−1

s1

s2

sN−1

sN

⊙
O

Figure 3. A two dimensional potential which is a cyclic analogue of
the potential shown in Fig.1: the corresponding matrix describing the
Kramer–Smoluchowski evolution is given by (3.10). It should compared
to the matrix (1.7) for the potential in Fig.1. The corresponding cyclic
graph is shown on the right.

We conclude by one example [15, §6.3] for which the graph G is elementary. We
assume that d = 2, ϕ has a maximum at x = 0, there are N minima, mn, N saddle
points, sn, and that (1.5) holds – see Fig.3. We assume also that

detϕ′′(mn) = µ > 0,
λ1(sn)

λ2(sn)
= −ν < 0,

where for s ∈ U (1), λ1(s) > 0 > λ2(s) denote the two eigenvalues of ϕ′′(s).
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Then assumptions of Theorem 4 are satisfied. The graph G associated to ϕ is the
cyclic graph with N vertices and the corresponding Laplacian is given by

AG =



2 −1 0 0 . . . . . . . . . −1
−1 2 −1 0 . . . . . . . . . 0

0 −1 2 −1 0 . . . . . . 0
... 0 −1 2

. . . . . . . . . 0
...

...
. . . . . . . . . . . . . . . 0

...
...

. . . . . . . . . . . . −1 0

0
...

. . . . . . . . . −1 2 −1
−1 0 . . . . . . . . . 0 −1 2


. (3.10)
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