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Similar results for
H=—hAg + V(x)

for large classes of potentials V' and metrics g.
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Neumann problem: if the resonances of
OCR", n>3, nodd,

are the sames as resonances of

K
O = B Re), B(x, R)NB(xi, Re) =0, k#1,
k=1

then O is also a union of disjoint balls. (Christiansen 2008)
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Just as in one dimension resonances agree with the poles of the
scattering matrix, Sp()\) : L2(S"71) — L2(S"™1).

If Ao is a resonance and Sp, (\) — So, () is holomorphic near A,
then O1 = Oy (Zworski 1999),

False in potential scattering (Lifshits 1999).

But... is it true that

Sv,(A) = Sy, (A) holomorphic for A\ € C = V; =V,

for V; € LY

comp

(R"), n odd?
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What dynamical conditions guarantee lower bounds on quantum
decay rates?

Theorem (Lax-Phillips 1969, ... Vainberg 1972, ...
Morawetz-Ralston-Strauss 1977, Melrose-Sjostrand 1982, ...)

Suppose that for any (x,£), x € R"\ O, |€|> = 1, the broken ray
through (x, &) leaves a compact set, that is that the obstacle is
non-trapping.

Then for any M > 0 there exists a constant C such that there no
resonances in

(A : ImA>—Mlog|A|, |A|>C}.
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In particular, there exists a resonance free strip, Im A > — (.

For H = —h?A + V(x) the non-trapping condition means that the
flow of x =2¢, € = =V V/(x), on [£]?+ V(x) = E >0is
non-trapping. Then near E we have

Helffer-Sjostrand 1985:
V analytic = Imz > —§ is resonance-free

Martinez 2002:

1
V € C*, dilation analytic = Imz > —Mhlog <h> is resonance free.

The last condition is the exact analogue of the condition in the
theorem.
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Ikawa's condition: obstacles are disjoint from convex hulls of pairs
of other obstacles.

The trapped set, K, is the set of (x,£), x € R"\ O, |£]? = 1, such
that the broken ray through (x, &) does not leave a compact set.

The topological pressure of the flow associated to a function f
defined on the trapped set:

1 W
P(f) = lim —log D exp (/0 d>tf|7dt) :
T,<T

where ®; is the flow, ~ are closed orbits with period T.
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Let us denote by A, the logarithm of the Jacobian of the flow at
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P(—N\+/2) <0
implies that there are no resonances in
ImA > P(=Ay/2)+¢€, Red> C.,

for any e.

In the physics literature the same statement was made by
Gaspard-Rice 1989 (the relation to pressure was only implicit in the
work of lkawa).

Following the work of Dolgopyat and Naud, Petkov-Stoyanov 2007
prove much more: there exists § > 0 such that there are no
resonances in

ImA > P(—A./2) =5, Rel> C.
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For operators H = —h?>A, + V/(x) the results similar to lkawa's
result became known only recently. We consider the pressure of
the flow on the (non-degenerate) energy surface [¢|Z + V(x) = E
and resonances in D(E, Ch), E > 0.

Nonnemacher-Zworski 2007:
P(—A4(E)/2) < 0= no resonances in Imz > (P(—A4+(E)/2) + €)h,

and some useful resolvent estimates in the resonance free strip.

Resolvent estimates imply local smoothing for Schrodinger
equations (Christianson, Datchev), no-loss Strichartz estimates
(Burg-Guillarmou-Hassell), and exponetial decay of energy. These
are useful for solving non-linear evolution equations.
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Counting scattering poles for obstacles

It is easier (but not essential) to assume O C R", n odd.
M) = 3 me(), me(¥) =rank [ REC)dC
A<r K
where R(() is the meromorphic continuation of the resolvent.

Melrose 1984:
N(r) < Cr",

which is optimal for the sphere.

Vodev 1994: similar results for n even.
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Sjostrand-Zworski 1999

i
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@mu)n-l

1
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Two convex obstacles

lkawa 1983, Gérard 1988

Resonances lie on a lattice and in particular,

2.

mg(z) ~ C(a)r.
Im z>—oy|2z|<r

Note that for one convex obstacle this sum would be O(1)
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Several convex obstacles:

There are many results: Ikawa, Burq, Petkov-Stoyanov... and in
physics: Gaspard-Rice, Cvitanovic, Eckhardt, Wirzba...

but no counting results better than Melrose's theorem...
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Suppose O = Ule O; be a union of disjoint convex obstacles
satisfying lkawa’s condition. Then

> mg(z) = O(r"+0),

Imz>—a, r<|z|<r+1
where 21, + 1 is the box dimension of the trapped set.

Ikawa's condition: obstacles are disjoint from convex hulls of pairs
of other obstacles.

The trapped set, K, is the set of (x,£), x € R"\ O, |£]? = 1, such
that the broken ray through (x, &) does not leave a compact set.

This theorem is part of a larger project on open hyperbolic systems
with topologically one dimensional trapped sets (always satisfied
for several convex bodies satisfying lkawa's condition).
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Zworski 1989:

“A+V, VelZ, (R, n odd,

N(r) < Cr".

Many results on lower bounds: Christiansen, Hislop, Sa Barreto...

Sjostrand 1990

—h?A + V, V analytic (including a class of polynomials!)

> mr(z)=0(h"").

|z—E|<Go

Sjostrand 1998
If E— L({x : V(x) > E}) has an analytic singularity at Ey then

> mr(2)=h"/G

|z—Eo|<Co
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Fractal Weyl laws: Sjostrand 1990

Analytic potential with hyperbolic dynamics
> mr@) =0,
|z—E|<é,Imz>—Ch

where 2 + 2 is the box dimension of the trapped set in T*R” near
energy E.

Zworski 1999, Guillopé-Lin-Zworski 2004

More precise bounds in the case of convex-cocompact Schottky
quotients M\H", 1 = §(I"), dimension of the limit set.
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Sjostrand-Zworski 2006
For C potentials with hyperbolic dynamics at energy E,

Y. mr(z)=0(h"e),

|z—E|<Ch

where 2 + 1 is the dimension of the trapped set on the energy
surface E.

The theorem for convex obstacles is the analogue of this result.

It is part of our project on the general treatment of bounds on the
density of resonances and of quantum decay rates for open
hyperbolic systems with topologically one dimensional trapped sets.

The only lower bound showing “optimality” comes from an open
quantum map “toy model”, Nonnenmacher-Zworski 2005.
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Schomerus-Tworzydto, Phys. Rev. Lett. 93, 154102 (2004)
Schomerus-Jacquod, J. Phys. A: Math. Gen, (2005)

Vaa et al Phys. Rev. E 72, 056211 (2005)

Keating et al Phys. Rev. Lett. 97, 150406 (2006)
Nonnenmacher-Rubin Nonlinearity (2007)

Wisniacki-Carlo Phys. Rev. E 77, 045201(R) (2008)
Wiersig-Main Phys. Rev. E 77, 036205 (2008)
Shepelyansky Phys. Rev. E 77, 015202(R) (2008)
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Lu-Sridhar-Zworski 2003
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FIG. 2. (a) The counting function, N(k), for width C = 0.28
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The least square approximation slope is equal to 1.288. (c)

Dependence of density of resonances AN/AC on strip width C.
The vertical line is § yo.
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FIG. 3. Dependence of exponent on the rescaled strip width,
2C/y,, for the 3-disk system in three cases with r/a =5, 6,
and 10. yo = 0.4703, 0.4103, and 0.2802 is the corresponding
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Here is an example from Wiersig et al who considered partially
open classically chaotic systems which numerically model the
following experimental set ups.

50 - 110 um

On the left a weakly opened semiconductor (GaAs), on the right a
strongly open polymer.
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A suitably modified Weyl law (due to partial opennes of the

system) is claimed to hold in this case (Wiersig et al Phys. Rev.

2008).
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On the left: the counting function on the log-log plot.

On the right: the fitted exponents as functions of the aspect ratio.
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